# Majorana Neutrinos  TeV Phenomenology 

## Chao－Qiang Geng

## 耿朝強

清華大學（台灣新竹）

The 9th Workshop of TeV Physics Working Group in 2014 May 15～18，2014，Sun Yat－sen University，Guangzhou，China

## Outline

- Introduction
- Models with Majorana neutrinos
- TeV Phenomenology: (i) $v$ mass generations, (ii) $0 v \beta \beta$ decays, and (iii) other physics
- Summary


## Experiments on solar neutrinos

$$
\Delta m_{21}^{2}=7.59_{-0.18}^{+0.20} \times 10^{-5} \mathrm{eV}^{2} \quad \stackrel{\Delta m_{\text {sun }}^{2}}{2}=\left|m_{2}\right|^{2}-\left|m_{1}\right|^{2}>0
$$

Neutrinos born in Cosmic ray collisions and on earth

$$
\left|\Delta m_{31}^{2}\right|=\left\{\begin{array}{lll}
2.45 \pm 0.09 \times 10^{-3} \mathrm{eV}^{2} & \text { normal hierarchy, } & \Delta m_{\text {atm }}^{2}=\left|\Delta m_{31}^{2}\right| \\
2.34_{-0.09}^{+0.10} \times 10^{-3} \mathrm{eV}^{2} & \text { inverted hierarchy, } & \Delta m_{31}^{2}=\left|m_{3}\right|^{2}-\left|m_{1}\right|^{2}
\end{array}\right.
$$

$$
\begin{aligned}
& \text { Normal hierarchy } \\
& \left|m_{\nu_{1}}\right|<\left|m_{\nu_{2}}\right| \ll\left|m_{\nu_{3}}\right| \\
& m_{1} \simeq 0, m_{2}^{2} \simeq \Delta m_{\odot}^{2}, \text { and } m_{3}^{2} \simeq \Delta m_{\text {atm }}^{2} . \\
& v_{3} \\
& \Delta \mathbf{m}^{2}{ }_{\odot}\left\{\begin{array}{l}
v_{2} \\
v_{1}
\end{array}\right. \\
& \text { Inverse hierarchy } \\
& \left|m_{\nu_{1}}\right| \simeq\left|m_{\nu_{2}}\right| \gg\left|m_{\nu_{3}}\right| \\
& m_{1}^{2} \simeq m_{2}^{2} \simeq \Delta m_{\text {atm }}^{2} \gg m_{3}^{2} \\
& \uparrow \mathbf{m}^{2}
\end{aligned}
$$

## - Introduction

## Experiments on solar neutrinos

$$
\Delta m_{21}^{2}=7.59_{-0.18}^{+0.20} \times 10^{-5} \mathrm{eV}^{2} \quad \Delta m_{\text {sun }}^{2}=\left|m_{2}\right|^{2}-\left|m_{1}\right|^{2}>0
$$

Neutrinos born in Cosmic ray collisions and on earth

$$
\left|\Delta m_{31}^{2}\right|=\left\{\begin{array}{lll}
2.45 \pm 0.09 \times 10^{-3} \mathrm{eV}^{2} & \text { normal hierarchy, } & \Delta m_{\text {atm }}^{2}=\left|\Delta m_{31}^{2}\right| \\
2.34_{-0.09}^{+0.10} \times 10^{-3} \mathrm{eV}^{2} & \text { inverted hierarchy, } & \Delta m_{31}^{2}=\left|m_{3}\right|^{2}-\left|m_{1}\right|^{2}
\end{array}\right.
$$

The Troitzk and Mainz ${ }^{3} \mathrm{H} \beta$-decay experiments

$$
m_{\nu_{\varepsilon}}<2.3 \mathrm{eV}
$$

$$
(95 \% \text { C.L. }) \stackrel{\text { KATRIN }}{\longrightarrow} 0.2 \mathrm{eV}
$$

$$
\begin{gathered}
\text { Normal hierarchy } \\
\left|m_{\nu_{1}}\right|<\left|m_{\nu_{2}}\right| \ll\left|m_{\nu_{3}}\right| \\
m_{1} \simeq 0, m_{2}^{2} \simeq \Delta m_{\odot}^{2}, \text { and } m_{3}^{2} \simeq \Delta m_{\text {atm }}^{2} \cdot \\
\boldsymbol{v}_{3} \\
\\
\Delta \mathbf{m}^{2} \odot\left\{\begin{array}{l}
v_{2} \\
\mathbf{v}_{1}
\end{array} \mathbf{v}_{\mathbf{e}} \square\right.
\end{gathered}
$$

## Experiments on solar neutrinos

$$
\Delta m_{21}^{2}=7.59_{-0.18}^{+0.20} \times 10^{-5} \mathrm{eV}^{2} \quad \Delta m_{\text {sun }}^{2}=\left|m_{2}\right|^{2}-\left|m_{1}\right|^{2}>0
$$

Neutrinos born in Cosmic ray collisions and on earth

$$
\left|\Delta m_{31}^{2}\right|=\left\{\begin{array}{lll}
2.45 \pm 0.09 \times 10^{-3} \mathrm{eV}^{2} & \text { normal hierarchy, } & \Delta m_{a t m}^{2}=\left|\Delta m_{31}^{2}\right| \\
2.34_{-0.09}^{+0.10} \times 10^{-3} \mathrm{eV}^{2} & \text { inverted hierarchy, } & \Delta m_{31}^{2}=\left|m_{3}\right|^{2}-\left|m_{1}\right|^{2}
\end{array}\right.
$$

The Troitzk and Mainz ${ }^{3} \mathrm{H} \beta$-decay experiments $m_{\nu_{e}}<2.3 \mathrm{eV} \quad(95 \% \mathrm{C} . \mathrm{L}.) \xrightarrow{\text { KATRIN }} \mathbf{0 . 2 ~ \mathrm { eV }}$

The best bound to their absolute values of the masses comes from Cosmology


$\left(\begin{array}{l}\nu_{e} \\ \nu_{\mu} \\ \nu_{\tau}\end{array}\right)=\left(\begin{array}{ccc}U_{e 1} & U_{e 2} & U_{e 3} \\ U_{\mu 1} \\ U_{\tau 1} & U_{u 2} & U_{\mu 3} \\ U_{T 2} & U_{T 3}\end{array}\right)\left(\begin{array}{l}\nu_{1} \\ \nu_{2} \\ \nu_{3}\end{array}\right)$
In terms of the PMNS mixing matrix

## A global fit yields

$$
\begin{aligned}
\sin ^{2} \theta_{12}=3.07_{-0.16}^{+0.18} \times 10^{-1},(16 \%) & \sin ^{2} \theta_{23}=3.86_{-0.21}^{+0.24} \times 10^{-1},(21 \%) \\
\sin ^{2} \theta_{13}=2.41 \pm 0.25 \times 10^{-2},(10 \%) & \delta / \pi=1.08_{-0.31}^{+0.28} \text { rad },
\end{aligned}
$$

## Bimaximal Matrix



$$
\theta_{12}=45^{\circ}, \theta_{23}=45^{\circ}, \theta_{13}=0
$$

Tribimaximal Matrix

$$
\left.\left\lvert\, \begin{array}{ccc}
\frac{\sqrt{6}}{3} & \frac{\sqrt{3}}{3} & 9 \\
-\frac{\sqrt{6}}{6} & \frac{\sqrt{3}}{3} & \frac{\sqrt{2}}{2} \\
\frac{\sqrt{6}}{6} & -\frac{\sqrt{3}}{3} & \frac{\sqrt{2}}{2}
\end{array}\right.\right) \quad \text { Daya-Bay }
$$

$$
\theta_{12}=35.3^{\circ}, \theta_{23}=45^{\circ}, \theta_{13}=0
$$

> Neutrino oscillations measure $m^{2}$ but they do not provide information about the absolute neutrino spectrum and cannot distinguish pure Dirac and Majorana neutrinos.


Dirac neutrino mass:

$$
\mathcal{L}_{D}=-m_{D} \overline{\nu_{L}} \nu_{R}+\text { h.c. }
$$



Majorana neutrino mass:

$$
\mathcal{L}_{M}=-m_{M} \overline{\nu^{c}} \nu+\text { h.c. }
$$

## Neutrino oscillations measure $m^{2}$ but they do not provide information about the absolute neutrino spectrum and cannot distinguish pure Dirac and Majorana neutrinos.

## Origin of the neutrino masses: Dirac or Majorana?



Dirac neutrino mass: $\mathcal{L}_{D}=-m_{D} \overline{\nu_{L}} \nu_{R}+$ h.c.
the lepton number L is conserved


Majorana neutrino mass:

$$
\mathcal{L}_{M}=-m_{M} \overline{\nu^{c}} \nu+\text { h.c. } \quad \nu \leftrightarrow \bar{\nu}
$$

-the lepton number $L$ is violated


The present limit is given by [H.V.Klapdor-Kleingrothaus]

$$
\left|\left\langle m_{\nu}\right\rangle\right| \equiv\left|\sum U_{e i}^{2} m_{i}\right|<0.2 \mathrm{eV}
$$

"Black Box" theorem
' Any mechanism inducing the $0 v \beta \beta$ decay produces an effective Majorana neutrino mass term, which must therefore contribute to this decay."


Ov $\beta \beta$ decay


Majorana neutrino mass

- Any mechanism inducing the $\mathbf{O v} \boldsymbol{\beta} \boldsymbol{\beta}$ decay produces an effective Majorana neutrino mass term, which must therefore contribute to this decay."


Ov $\beta \beta$ decay


Majorana neutrino mass

The theorem does not state if the mechanism for $0 v \beta \beta$ from $m_{v}$ is the dominant one.

In some models, the dominant contributions to $0 v \beta \beta$ are generated without directly involving $\mathrm{v}_{\mathrm{m}}$.

## In the SM:

|  | $\mathrm{S} U(3) \otimes S U(2) \otimes U(1)$ |
| :---: | :---: |
| $L_{a}=\left(\nu_{a}, l_{a}\right)^{T}$ | $(1,2,-1)$ |
| $e_{a}^{c}$ | $(1,1,2)$ |
| $Q_{a}=\left(u_{a}, d_{a}\right)^{T}$ | $(3,2,1 / 3)$ |
| $u_{a}^{c}$ | $(\overline{3}, 1,-4 / 3)$ |
| $d_{a}^{c}$ | $(\overline{3}, 1,2 / 3)$ |
| $\Phi$ | $(1,2,1)$ |

Table 1: Matter and scalar multiplets of the Standard Model (SM)

- A $S U(2)$ doublet fundamental scalar Higgs field is employed to give masses to BOTH the $S U(2) \times U(1)$ gauge

$$
H=\binom{0}{\frac{v+h^{0}}{\sqrt{2}}}, \quad v=247 \mathrm{GeV}
$$ bosons and fermions.

- Higgs fermion interaction

$$
y_{e}\left(\begin{array}{l}
\overline{\nu_{e L}}
\end{array} \quad \overline{e_{L}}\right)\binom{0}{\frac{v+h^{0}}{\sqrt{2}}} e_{R}+h . c . \rightarrow \frac{y_{e} v}{\sqrt{2}} \bar{e} e+\frac{y_{e} v}{\sqrt{2}} \bar{e} e h^{0}
$$

- Fermion mass $m_{f}=\frac{y_{f} v}{\sqrt{2}}$ and $\bar{f} f H$ coupling is proportional to fermion mass



## In the SM:

|  | $\mathrm{S} U(3) \otimes S U(2) \otimes U(1)$ |
| :---: | :---: |
| $L_{a}=\left(\nu_{a}, l_{a}\right)^{T}$ | $(1,2,-1)$ |
| $e_{a}^{c}$ | $(1,1,2)$ |
| $Q_{a}=\left(u_{a}, d_{a}\right)^{T}$ | $(3,2,1 / 3)$ |
| $u_{a}^{c}$ | $(\overline{3}, 1,-4 / 3)$ |
| $d_{a}^{c}$ | $(\overline{3}, 1,2 / 3)$ |
| $\Phi$ | $(1,2,1)$ |

Table 1: Matter and scalar multiplets of the Standard Model (SM)

- A $S U(2)$ doublet fundamental scalar Higgs field is employed to give masses to BOTH the $S U(2) \times U(1)$ gauge

$$
H=\binom{0}{\frac{v+h^{0}}{\sqrt{2}}}, \quad v=247 \mathrm{GeV}
$$ bosons and fermions.

- Higgs fermion interaction

$$
y_{e}\left(\begin{array}{ll}
\overline{\nu_{e L}} & \overline{e_{L}}
\end{array}\right)\binom{0}{\frac{v+h^{0}}{\sqrt{2}}} e_{R}+h . c . \rightarrow \frac{y_{e} v}{\sqrt{2}} \bar{e} e+\frac{y_{e} v}{\sqrt{2}} \bar{e} e h^{0}
$$

- Fermion mass $m_{f}=\frac{y_{f} \vee}{\sqrt{2}}$ and $\bar{f} f H$ coupling is proportional to fermion mass

- What about neutrinos?
- Do they get their masses like other fermions?


## In the SM:

|  | $\mathrm{SU}(3) \otimes S U(2) \otimes U(1)$ |
| :---: | :---: |
| $L_{a}=\left(\nu_{a}, l_{a}\right)^{T}$ | $(1,2,-1)$ |
| $e_{a}^{c}$ | $(1,1,2)$ |
| $Q_{a}=\left(u_{a}, d_{a}\right)^{T}$ | $(3,2,1 / 3)$ |
| $u_{a}^{c}$ | $(\overline{3}, 1,-4 / 3)$ |
| $d_{a}^{c}$ | $(\overline{3}, 1,2 / 3)$ |
| $\Phi$ | $(1,2,1)$ |

Table 1: Matter and scalar multiplets of the Standard Model (SM)

- A $S U(2)$ doublet fundamental scalar Higgs field is employed to give masses to BOTH the $S U(2) \times U(1)$ gauge $H=\binom{0}{\frac{v+h^{0}}{\sqrt{2}}}, \quad v=247 \mathrm{GeV}$ bosons and fermions.
- Higgs fermion interaction

$$
y_{e}\left(\overline{\nu_{e L L}} \quad \overline{e_{L}}\right)\binom{0}{\frac{v+h^{0}}{\sqrt{2}}} e_{R}+h . c . \rightarrow \frac{y_{e} v}{\sqrt{2}} \bar{e} e+\frac{y_{e} v}{\sqrt{2}} \bar{e} e h^{0}
$$

- Fermion mass $m_{f}=\frac{y_{f} \vee}{\sqrt{2}}$ and $\bar{f} f H$ coupling is proportional to fermion mass
- What about neutrinos?
- Do they get their masses like other fermions?
$\square$ No Dirac mass term (no right-handed neutrino).
$\square$ No Majorana mass term either ( $v_{\mathrm{L}}$ is an $\mathrm{SU}(2)$ doublet).


## In the SM:

|  | $\mathrm{S} U(3) \otimes S U(2) \otimes U(1)$ |
| :---: | :---: |
| $L_{a}=\left(\nu_{a}, l_{a}\right)^{T}$ | $(1,2,-1)$ |
| $e_{a}^{c}$ | $(1,1,2)$ |
| $Q_{a}=\left(u_{a}, d_{a}\right)^{T}$ | $(3,2,1 / 3)$ |
| $u_{a}^{c}$ | $(\overline{3}, 1,-4 / 3)$ |
| $d_{a}^{c}$ | $(\overline{3}, 1,2 / 3)$ |
| $\Phi$ | $(1,2,1)$ |

Table 1: Matter and scalar multiplets of the Standard Model (SM)
$\square$ No Dirac mass term (no right-handed neutrino).
$\square$ No Majorana mass term either ( $v_{\mathrm{L}}$ is an $\mathrm{SU}(2)$ doublet).
S. Weinberg, Phys. Rev. D22, 1694 (1980).


Dimension five operator responsible for neutrino mass

## Effective Dim-5 operator:

$\mathrm{O}=\left(\lambda_{0} / \mathrm{M}_{\mathrm{X}}\right) \mathrm{L} \Phi \mathrm{L} \Phi$

## In the SM:

|  | $\mathrm{S} U(3) \otimes S U(2) \otimes U(1)$ |
| :---: | :---: |
| $L_{a}=\left(\nu_{a}, l_{a}\right)^{T}$ | $(1,2,-1)$ |
| $e_{a}^{c}$ | $(1,1,2)$ |
| $Q_{a}=\left(u_{a}, d_{a}\right)^{T}$ | $(3,2,1 / 3)$ |
| $u_{a}^{c}$ | $(\overline{3}, 1,-4 / 3)$ |
| $d_{a}^{c}$ | $(\overline{3}, 1,2 / 3)$ |
| $\Phi$ | $(1,2,1)$ |

Table 1: Matter and scalar multiplets of the Standard Model (SM)
$\square$ No Dirac mass term (no right-handed neutrino).
$\square$ No Majorana mass term either ( $v_{\mathrm{L}}$ is an $\mathrm{SU}(2)$ doublet).
S. Weinberg, Phys. Rev. D22, 1694 (1980).


Dimension five operator responsible for neutrino mass

## Effective Dim-5 operator:

$\mathrm{O}=\left(\lambda_{0} / \mathrm{M}_{\mathrm{X}}\right) \mathrm{L} \Phi \mathrm{L} \Phi$

$$
S S B
$$

$$
m_{\nu}=\lambda_{0} \frac{\langle\Phi\rangle^{2}}{M_{X}}, \quad \text { (Majorana) }
$$

For $\lambda_{0} \sim 1,<\Phi>\sim 100 \mathrm{GeV}, \mathrm{M}_{\mathrm{X}} \sim \mathrm{M}_{\mathrm{P}} \rightarrow \mathrm{m}_{v} \sim 10^{-6} \mathrm{eV}$ (too small)

## $B S M:$ (a) If the right handed neutrinos $v_{R}$ exist: $v_{R}=(1,1,0)$

$$
\mathcal{L}_{Y}=Y_{\nu} \bar{L} \Phi \nu_{R}+h . c . \Rightarrow m_{\nu}^{D}=Y_{\nu}<\Phi>
$$

The observed neutrino masses would require $Y_{\nu} \leq 10^{-13}-10^{-12}$ (unnatural)?

## BSM: (a) If the right handed neutrinos $\mathrm{v}_{\mathrm{R}}$ exist: $\mathrm{v}_{\mathrm{R}}=(1,1,0)$

$$
\mathcal{L}_{Y}=Y_{\nu} \bar{L} \Phi \nu_{R}+h . c . \quad \Rightarrow \quad m_{\nu}^{D}=Y_{\nu}<\Phi>
$$

The observed neutrino masses would require $Y_{\nu} \leq 10^{-13}-10^{-12}$ (unnatural)?
(b) Majorana mass for $\mathbf{v}_{\mathbf{R}}: M_{R} \nu_{R}^{T} C^{-1} \nu_{R}+h . c$.

Type-I see-saw mechanism: $\mathcal{M}_{\nu}=-m_{D}^{T} M_{R}^{-1} m_{D}$.
(naturally small?+Majorana)


## $B S M:$ (a) If the right handed neutrinos $v_{R}$ exist: $v_{R}=(1,1,0)$

$$
\mathcal{L}_{Y}=Y_{\nu} \bar{L} \Phi \nu_{R}+h . c . \quad \Rightarrow \quad m_{\nu}^{D}=Y_{\nu}<\Phi>
$$

The observed neutrino masses would require $Y_{\nu} \leq 10^{-13}-10^{-12}$
(b) Majorana mass for $\mathbf{v}_{\mathbf{R}}: M_{R} \nu_{R}^{T} C^{-1} \nu_{R}+$ h.c.

Type-I see-saw mechanism: $\mathcal{M}_{\nu}=-m_{D}^{T} M_{R}^{-1} m_{D}$.
(naturally small?+Majorana)


## (c) Without $\mathrm{v}_{\mathrm{R}}$ :

Minkowski 1977; ... Foot, Lew, He, Joshi 1989
\% Majorana : tree level


Type II seesaw

$$
\Delta \equiv\left(\begin{array}{cc}
H^{-} & -\sqrt{2} H^{0} \\
\sqrt{2} H^{--} & -H^{-}
\end{array}\right)=(1,3,2) \quad \text { scalar triplet }
$$

$$
M_{\nu}=\sqrt{2} Y_{\Delta}\langle\Delta\rangle=Y_{\Delta} \frac{\mu_{\Delta} v^{2}}{M_{\Delta}^{2}}
$$

- Zee model (with charged scalar singlet and additional scalar doublets).


$$
l^{T} \hat{f} i \sigma_{2} l \eta^{+}+\sum_{i=1,2} \bar{l} \hat{f}_{i} e H_{i}
$$

\& Majorana : loop level

- Zee model (with charged scalar singlet and additional scalar doublets).

$$
l^{T} \hat{f} i \sigma_{2} l \eta^{+}+\sum_{i=1,2} \bar{l} \hat{f}_{i} e H_{i}
$$

- Ma model (with fermion singlet and additional scalar doublet).

\& Majorana : loop level
- Zee model (with charged scalar singlet and additional scalar doublets).

$$
l^{T} \hat{f} i \sigma_{2} l \eta^{+}+\sum_{i=1,2} \bar{l} \hat{f}_{i} e H_{i}
$$

- Ma model (with fermion singlet and additional scalar doublet).


1988

- Zee-Babu model (with doubly and singly charged scalars).

$$
l^{T} \hat{f} l \eta^{+}+l_{R}^{T} \hat{h} l_{R} k^{++}
$$



- Zee model (with charged scalar singlet and additional scalar doublets).

$$
l^{T} \hat{f} i \sigma_{2} l \eta^{+}+\sum_{i=1,2} \bar{l} \hat{f}_{i} e H_{i}
$$

- Ma model (with fermion singlet and additional scalar doublet). 1986

1988

- Zee-Babu model (with doubly and singly charged scalars).

$$
l^{T} \hat{f} l \eta^{+}+l_{R}^{T} \hat{h} l_{R} k^{++}
$$

- Other models:



## Hirsch et al. 1996, Aristizabal et al. 2008 <br> Hirsch et al. 1996, Leptoquarks



- Zee model (with charged scalar singlet and additional scalar doublets).

$$
l^{T} \hat{f} i \sigma_{2} l \eta^{+}+\sum_{i=1,2} \bar{l} \hat{f}_{i} e H_{i}
$$

- Ma model (with fermion singlet and additional scalar doublet).
- Other models:


## Hirsch et al. 1996, Aristizabal et al. 2008 Leptoquarks



L.Krauss,S.Nasri,and M.Trodden, 2002

\& Majorana : loop level

- Zee model (with charged scalar singlet and additional scalar doublets).

$$
l^{T} \hat{f} i \sigma_{2} l \eta^{+}+\sum_{i=1,2} \bar{l} \hat{f}_{i} e H_{i}:
$$

- Ma model (with fermion singlet and additional scalar doublet).

- Zee-Babu model (with doubly and singly charged scalars).

$$
l^{T} \hat{f} l \eta^{+}+l_{R}^{T} \hat{h} l_{R} k^{++}
$$

- Other models:

Hirsch et al. 1996, Aristizabal
Leptoquarks
Top quark as a dark portal
John N. Ng. Alejandro de la Puente 2013
L.Krauss,S.Nasri,and M.Trodden, 2002

\& Majorana : loop level

- Zee model (with charged scalar singlet and additional scalar doublets).

2006

$$
l^{T} \hat{f} i \sigma_{2} l \eta^{+}+\sum_{i=1,2} \bar{l} \hat{f}_{i} e H_{i}:
$$

- Ma model (with fermion singlet and additional scalar doublet).

- Zee-Babu model (with doubly and singly charged scalars).

$$
l^{T} \hat{f} l \eta^{+}+l_{R}^{T} \hat{h} l_{R} k^{++}
$$

- Other models:


Top quark as a dark portal

L.Krauss,S.Nasri, and M.Trodden, 2002

C.S.Chen,K.L.McDonald,S.Nasri, 2014
\& Majorana : loop level

- Zee model (with charged scalar singlet and additional scalar doublets).
- Ma model (with fermion singlet and additional scalar doublet).

- Zee-Babu model (with doubly and singly charged scalars).

$$
l^{T} \hat{f} l \eta^{+}+l_{R}^{T} \hat{h} l_{R} k^{++}
$$

- Other models:

L.Krauss,S.Nasri,and M.Trodden, 2002

C.S.Chen,K.L.McDonald,S.Nasri, 2014

Suppressed 0v $\beta \beta$ in these models!

- Models with Majorana Neutrinos:


## C.S.Chen+CQG+J.N.Ng, PRD75,053004[07]

|  | $\mathrm{SU}(3)_{\mathrm{c}} \otimes S U(2)_{\mathrm{L}} \otimes U(1)_{\mathrm{x}}$ |
| :---: | :---: |
| $L_{a}=\left(\nu_{a}, l_{a}\right)_{L}^{T}$ | $(1,2,-1)$ |
| $e_{a L}^{c}$ | $(1,1,2)$ |
| $Q_{a}=\left(u_{a}, d_{a}\right)_{L}^{T}$ | $(3,2,1 / 3)$ |
| $u_{a L}^{c}$ | $(\overline{3}, 1,-4 / 3)$ |
| $d_{a L}^{c}$ | $(\overline{3}, 1,2 / 3)$ |
| $\Phi$ | $(1,2,1)$ |

Table 1: Matter and scalar multiplets of the Standard Model (SM)
New scalars: a triplet $T(1,3,2)+$ a singlet $\Psi(1,1,4)$

## - Models with Majorana Neutrinos:

## C.S.Chen+CQG+J.N.Ng, PRD75,053004[07]

|  | $\mathrm{SU}(3)_{\mathrm{c}} \otimes S U(2)_{\mathrm{L}} \otimes U(1)_{\mathrm{x}}$ |
| :---: | :---: |
| $L_{a}=\left(\nu_{a}, l_{a}\right)_{L}^{T}$ | $(1,2,-1)$ |
| $e_{a L}^{c}$ | $(1,1,2)$ |
| $Q_{a}=\left(u_{a}, d_{a}\right)_{L}^{T}$ | $(3,2,1 / 3)$ |
| $u_{a L}^{c}$ | $(\overline{3}, 1,-4 / 3)$ |
| $d_{a L}^{c}$ | $(\overline{3}, 1,2 / 3)$ |
| $\Phi$ | $(1,2,1)$ |

Table 1: Matter and scalar multiplets of the Standard Model (SM)

## No $v_{R}$ added

New scalars: a triplet $\mathrm{T}(1,3,2)+$ a singlet $\Psi(1,1,4)$

$$
\begin{aligned}
V(\phi, T, \psi)= & -\mu^{2} \phi^{\dagger} \phi+\lambda_{\phi}\left(\phi^{\dagger} \phi\right)^{2}-\mu_{T}^{2} \operatorname{Tr}\left(T^{\dagger} T\right)+\lambda_{T}\left[\operatorname{Tr}\left(T^{\dagger} T\right)\right]^{2}+\lambda_{T}^{\prime} \operatorname{Tr}\left(T^{\dagger} T T^{\dagger} T\right)+m^{2} \Psi^{\dagger} \Psi+\lambda_{\Psi}\left(\Psi^{\dagger} \Psi\right)^{2} \\
& +\kappa_{1} \operatorname{Tr}\left(\phi^{\dagger} \phi T^{\dagger} T\right)+\kappa_{2} \phi^{\dagger} T T^{\dagger} \phi+\kappa_{\Psi} \phi^{\dagger} \phi \Psi^{\dagger} \Psi+\rho \operatorname{Tr}\left(T^{\dagger} T \Psi^{\dagger} \Psi\right) \\
& +\left[\lambda\left(\phi^{T} T \phi \Psi^{\dagger}\right)-M\left(\phi^{T} T^{\dagger} \phi\right)+\text { H.c. }\right] .
\end{aligned}
$$

New Yukawa term: $\quad Y_{a b}{ }_{a R}{ }^{\bar{c}}{ }^{c} l_{b R} \Psi \quad$ lepton \# for $\Psi$ is 2

- Models with Majorana Neutrinos:


## C.S.Chen+CQG+J.N.Ng, PRD75,053004[07]

|  | $\mathrm{SU}(3)_{\mathrm{c}} \otimes S U(2)_{\mathrm{L}} \otimes U(1)_{\mathrm{x}}$ |
| :---: | :---: |
| $L_{a}=\left(\nu_{a}, l_{a}\right)_{L}^{T}$ | $(1,2,-1)$ |
| $e_{a L}^{c}$ | $(1,1,2)$ |
| $Q_{a}=\left(u_{a}, d_{a}\right)_{L}^{T}$ | $(3,2,1 / 3)$ |
| $u_{a L}^{c}$ | $(\overline{3}, 1,-4 / 3)$ |
| $d_{a L}^{c}$ | $(\overline{3}, 1,2 / 3)$ |
| $\Phi$ | $(1,2,1)$ |

## No $v_{R}$ added

Table 1: Matter and scalar multiplets of the Standard Model (SM)
New scalars: a triplet $\mathrm{T}(1,3,2)+$ a singlet $\Psi(1,1,4)$

$$
\begin{aligned}
V(\phi, T, \psi)= & -\mu^{2} \phi^{\dagger} \phi+\lambda_{\phi}\left(\phi^{\dagger} \phi\right)^{2}-\mu_{T}^{2} \operatorname{Tr}\left(T^{\dagger} T\right)+\lambda_{T}\left[\operatorname{Tr}\left(T^{\dagger} T\right)\right]^{2}+\lambda_{T}^{\prime} \operatorname{Tr}\left(T^{\dagger} T T^{\dagger} T\right)+m^{2} \Psi^{\dagger} \Psi+\lambda_{\Psi}\left(\Psi^{\dagger} \Psi\right)^{2} \\
& +\kappa_{1} \operatorname{Tr}\left(\phi^{\dagger} \phi T^{\dagger} T\right)+\kappa_{2} \phi^{\dagger} T T^{\dagger} \phi+\kappa_{\Psi} \phi^{\dagger} \phi \Psi^{\dagger} \Psi+\rho \operatorname{Tr}\left(T^{\dagger} T \Psi^{\dagger} \Psi\right) \\
& +\left[\lambda\left(\phi^{T} T \phi \Psi^{\dagger}\right)-M\left(\phi^{T} T^{\dagger} \phi\right)+\text { H.c. }\right] .
\end{aligned}
$$

New Yukawa term: $\quad Y_{a b}{ }_{a R}{ }_{a}^{c} l_{b R} \Psi \quad$ lepton \# for $\Psi$ is 2
No Yukawa coupling for the triplet:
Forbidden by some symmetry*
*Symmetry: two Higgs doublets ( $\Phi_{1}$ and $\Phi_{2}$ ) with $\mathrm{Z}_{2}$-symmetry or T-parity
T-parity: $\Phi_{1} \rightarrow \Phi_{1} ; \Phi_{2} \rightarrow-\Phi_{2} ; T \rightarrow-T ; L \rightarrow L$

*Symmetry: two Higgs doublets $\left(\mathbf{\Phi}_{\mathbf{1}}\right.$ and $\left.\mathbf{\Phi}_{\mathbf{2}}\right) \quad$ CS.Chen,CQG,PRD82,105004(2010) with $Z_{2}$-symmetry or T-parity T-parity: $\quad \Phi_{1} \rightarrow \Phi_{1} ; \Phi_{2} \rightarrow-\Phi_{2} ; T \rightarrow-T ; L \rightarrow L$


Chen, CQG,Huang,Tsai, PRD87,077702 (2013)
Without Symmetry: $\xi(1, N, 2)+\Psi(\mathbf{1 , 1 , 4 )} \Rightarrow D K \xi$ if $N>3$
We will consider higher dimensional multiplets so that NO LL-like term is allowed in the Yukawa interactions.
$\mathrm{N}>3(=4,5,6,7, \ldots)$ is the quantum \# under SU(2)L and $\mathrm{Y}=2$ is the hypercharge with $\mathrm{Q}_{\mathrm{em}}=\mathrm{I}_{3}+\mathrm{Y} / 2$
*Symmetry: two Higgs doublets ( $\boldsymbol{\Phi}_{\mathbf{1}}$ and $\boldsymbol{\Phi}_{\mathbf{2}}$ ) CS.Chen,CQG,PRD82,105004(2010) with $Z_{2}$-symmetry or T-parity T-parity: $\Phi_{1} \rightarrow \Phi_{1} ; \Phi_{2} \rightarrow-\Phi_{2} ; T \rightarrow-T ; L \rightarrow L$


Chen, CQG,Huang,Tsai, PRD87,077702 (2013)
Without Symmetry: $\xi(1, N, 2)+\Psi\left(\mathbf{1 , 1 , 4 )} \Rightarrow D K^{k}\right.$ if $N>3$

We will consider higher dimensional multiplets so that NO LL-like term is allowed in the Yukawa interactions.
$\mathrm{N}>3(=4,5,6,7, \ldots)$ is the quantum \# under SU(2)L and $\mathrm{Y}=\mathbf{2}$ is the hypercharge with $\mathrm{Q}_{\mathrm{em}}=\mathrm{I}_{3}+\mathrm{Y} / 2$

Multi High Charged Scalars
e.g. for $\mathbf{N}=\mathbf{5}$
enhance
Higgs $\longrightarrow 2$ photon

## 1.6 times of excess at the LHC

*Symmetry: two Higgs doublets ( $\boldsymbol{\Phi}_{\mathbf{1}}$ and $\boldsymbol{\Phi}_{\mathbf{2}}$ ) CS.Chen,CQG,PRD82,105004(2010) with $\mathrm{Z}_{2}$-symmetry or T-parity
T-parity: $\quad \Phi_{1} \rightarrow \Phi_{1} ; \Phi_{2} \rightarrow-\Phi_{2} ; T \rightarrow-T ; L \rightarrow L$
Chen,CQG,Huang,Tsai, PRD87,077702 (2013)
Without Symmetry: $\xi(1, N, 2)+\Psi(\mathbf{1 , 1 , 4 )} \Rightarrow D K \xi$ if $N>3$

We will consider higher dimensional multiplets so that NO LL-like term is allowed in the Yukawa interactions.
$\mathrm{N}>3(=4,5,6,7, \ldots)$ is the quantum \# under SU(2)L and $\mathrm{Y}=\mathbf{2}$ is the hypercharge with $\mathrm{Q}_{\mathrm{em}}=\mathrm{I}_{3}+\mathrm{Y} / 2$

Multi High Charged Scalars
e.g. for $\mathbf{N}=\mathbf{5}$ Co $\xi=\left(\xi^{+++}, \xi^{++}, \xi^{+}, \xi^{0}, \xi^{-}\right)^{T}$
enhance
Higgs $\longrightarrow 2$ photon

## 1.6 times of excess at the LHC

© The scalar potential reads

$$
\begin{aligned}
V(\Phi, \xi, \Psi)= & -\mu_{\Phi}^{2}|\Phi|^{2}+\lambda_{\Phi}|\Phi|^{4}+\mu_{\xi}^{2}|\xi|^{2}+\lambda_{\xi}^{\alpha}|\xi|_{\alpha}^{4}+\mu_{\Psi}^{2}|\Psi|^{2}+\lambda_{\Psi}|\Psi|^{4} \\
& +\lambda_{\Phi \xi}^{\beta}\left(|\Phi|^{2}|\xi|^{2}\right)_{\beta}+\lambda_{\Phi \Psi}|\Phi|^{2}|\Psi|^{2}+\lambda_{\xi \Psi}|\xi|^{2}|\Psi|^{2} \\
& +[\mu \xi \xi \Psi+\text { h.c. }]
\end{aligned}
$$

No $\mathrm{N}=4,6,8,10, \ldots$, even dimensions due to their antisymmetric products
$\mathrm{N}=5,7, \ldots$, odd dimensions

## Constraints on the models: VEVs: $\left\langle\phi^{0}\right\rangle \equiv \frac{v}{\sqrt{2}}$ and $\left\langle T^{0}\right\rangle \equiv \frac{v_{T}}{\sqrt{2}}$.

$$
\begin{aligned}
M_{W}^{2} & =\frac{g^{2}}{4}\left(v^{2}+2 v_{T}^{2}\right), \quad M_{Z}^{2}=\frac{g^{2}}{4 \cos ^{2} \theta_{W}}\left(v^{2}+4 v_{T}^{2}\right), \\
\rho & =1.0002_{-0.0004}^{+0.0007} \quad \Rightarrow v_{T}<4.41 \mathrm{GeV}
\end{aligned}
$$

Two doubly charged scalars:

$$
T=\left(\begin{array}{ll}
T^{0} & \frac{T^{-}}{\sqrt{2}} \\
\frac{T^{-}}{\sqrt{2}}
\end{array}\right) \text { and }
$$

## Constraints on the models: <br> VEVs: $\left\langle\phi^{0}\right\rangle \equiv \frac{v}{\sqrt{2}}$ and $\left\langle T^{0}\right\rangle \equiv \frac{v_{T}}{\sqrt{2}}$.

$$
\begin{aligned}
M_{W}^{2} & =\frac{g^{2}}{4}\left(v^{2}+2 v_{T}^{2}\right), \quad M_{Z}^{2}=\frac{g^{2}}{4 \cos ^{2} \theta_{W}}\left(v^{2}+4 v_{T}^{2}\right), \\
\rho & =1.0002_{-0.0004}^{+0.0007} \quad \Rightarrow v_{T}<4.41 \mathrm{GeV}
\end{aligned}
$$

Two doubly charged scalars:

$$
\begin{aligned}
& T=\left(\begin{array}{cc}
T^{0} & \frac{T^{-}}{\sqrt{2}} \\
\frac{T^{-}}{\sqrt{2}} & T^{--}
\end{array}\right) \text {and } \quad \mathbf{\Psi + +} \\
& \text { or for } \mathbf{N}=\mathbf{5} \quad \xi=\left(\xi^{+++}\left(\xi^{++} \xi^{+}, \xi^{0}, \xi^{-}\right)^{T}\right.
\end{aligned}
$$

## Constraints on the models: <br> VEVs: $\left\langle\phi^{0}\right\rangle \equiv \frac{v}{\sqrt{2}}$ and $\left\langle T^{0}\right\rangle \equiv \frac{v_{T}}{\sqrt{2}}$.

$$
\begin{aligned}
M_{W}^{2} & =\frac{g^{2}}{4}\left(v^{2}+2 v_{T}^{2}\right), \quad M_{Z}^{2}=\frac{g^{2}}{4 \cos ^{2} \theta_{W}}\left(v^{2}+4 v_{T}^{2}\right), \\
\rho & =1.0002_{-0.0004}^{+0.0007} \quad \Rightarrow v_{T}<4.41 \mathrm{GeV}
\end{aligned}
$$

Two doubly charged scalars:

$$
T=\left(\begin{array}{cc}
T^{0} & \frac{T^{-}}{\sqrt{2}} \\
\frac{T^{-}}{\sqrt{2}} & T^{--}
\end{array}\right) \text {and }
$$

( + +

$$
\text { or for } \mathbf{N}=\mathbf{=} \quad \xi=\left(\xi^{+++}\left(\xi^{+}+\xi^{+}, \xi^{0}, \xi^{-}\right)^{T}\right.
$$

$$
\binom{P_{1}^{ \pm \pm}}{P_{2}^{ \pm \pm}}=\left(\begin{array}{cc}
\cos \delta & \sin \delta \\
-\sin \delta & \cos \delta
\end{array}\right)\binom{T^{ \pm \pm}}{\Psi^{ \pm \pm}} \quad \sin 2 \delta=\left[1+\left(\frac{2 m^{2}+\left(2 \lambda_{T}^{\prime}+\rho\right) v_{T}^{2}}{2 \lambda v^{2}}+\frac{\kappa_{2}+\kappa_{\Psi}}{2 \lambda}-\frac{\omega}{\lambda}\right)^{2}\right]^{-\frac{1}{2}}
$$

$$
M_{P_{1,2}}^{2}=\frac{1}{2}\left[a+c \mp \sqrt{4 b^{2}+(c-a)^{2}}\right]
$$

$$
\omega \equiv \frac{M}{\sqrt{2} v_{T}}
$$

$$
a=\frac{1}{2}\left(2 \omega-\kappa_{2}\right) v^{2}-\lambda_{T}^{\prime} v_{T}^{2}, \quad b=\frac{1}{2} \lambda v^{2}, \quad c=m^{2}+\frac{1}{2}\left(\kappa_{\Psi} v^{2}+\rho v v_{T}^{2}\right) .
$$



Figure 1: Maximum value of $M_{P_{1}}$ for $v_{T}=M=4 \mathrm{GeV}$, and $\left|\lambda_{T}\right|$ set to $4 \pi$.


Figure 2: $M_{P_{1}}$ as a function of $m$ for $\left|\kappa_{2}\right|=0.5,0.25,0.125$ in units of $4 \pi$, with $v_{T}=M=4 \mathrm{GeV}$ and $\lambda=-\lambda_{T}^{\prime}=1$.

The $P_{1}$ state is well within the reach of the LHC; $P_{2}$ will be too heavy to be of interest to the LHC.

Current LHC limit: $200-400 \mathrm{GeV}$

- TeV Phenomenology:


## (i) $v$ mass generations:



The neutrino masses are generated radiatively at two-loop level

## - TeV Phenomenology:

## (i) $v$ mass generations:



## The neutrino masses are generated radiatively at two-loop level

$$
\begin{aligned}
& \left(m_{\nu}\right)_{a b}=\frac{1}{\sqrt{2}} g^{4} m_{a} m_{b} v_{T} Y_{a b} \sin (2 \delta)\left[I\left(M_{W}^{2}, M_{P_{1}}^{2}, m_{a}, m_{b}\right)-I\left(M_{W}^{2}, M_{P_{2}}^{2}, m_{a}, m_{b}\right)\right] \\
& I\left(M_{W}^{2}, M_{P_{i}}^{2}, m_{a}^{2}, m_{b}^{2}\right)= \\
& \int \frac{d^{4} q}{(2 \pi)^{4}} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{1}{k^{2}-m_{a}^{2}} \frac{1}{k^{2}-M_{W}^{2}} \frac{1}{q^{2}-M_{W}^{2}} \frac{1}{q^{2}-m_{b}^{2}} \frac{1}{(k-q)^{2}-M_{P_{i}}^{2}} . \\
& M_{P_{1,2}}>M_{W} \\
& I\left(M_{W}^{2}, M_{P_{i}}^{2}, 0,0\right) \sim \frac{1}{(4 \pi)^{4}} \frac{1}{M_{P_{i}}^{2}} \log ^{2}\left(\frac{M_{W}^{2}}{M_{P_{i}}^{2}}\right) \\
& \begin{aligned}
m_{\nu} & =\tilde{f}\left(M_{P_{1}}, M_{P_{2}}\right) \times\left(\begin{array}{ccc}
m_{e}^{2} Y_{e e} & m_{e} m_{\mu} Y_{e \mu} & m_{e} m_{\tau} Y_{\epsilon \tau} \\
m_{e} m_{\mu} Y_{e \mu} & m_{\mu}^{2} Y_{\mu \mu} & m_{\tau} m_{\mu} Y_{\mu \tau} \\
m_{e} m_{\tau} Y_{e \tau} & m_{\tau} m_{\mu} Y_{\mu \tau} & m_{\tau}^{2} Y_{\tau \tau}
\end{array}\right) \\
& =f\left(M_{P_{1}}, M_{P_{2}}\right) \times\left(\begin{array}{lll}
2.6 \times 10^{-7} Y_{e e} & 5.4 \times 10^{-5} Y_{e \mu} & 9.1 \times 10^{-4} Y_{e \tau} \\
5.4 \times 10^{-5} Y_{e \mu} & 1.1 \times 10^{-2} Y_{\mu \mu} & 0.19 Y_{\mu \tau} \\
9.1 \times 10^{-4} Y_{e \tau} & 0.19 Y_{\mu \tau} & 3.17 Y_{\tau \tau}
\end{array}\right)
\end{aligned} \\
& \tilde{f}\left(M_{P_{1}}, M_{P_{2}}\right)=\frac{\sqrt{2} g^{4} v_{T} \sin (2 \delta)}{128 \pi^{4}}\left[\frac{1}{M_{P_{1}}^{2}} \log ^{2}\left(\frac{M_{W}}{M_{P_{1}}}\right)-\frac{1}{M_{P_{2}}^{2}} \log ^{2}\left(\frac{M_{W}}{M_{P_{2}}}\right)\right] \\
& f=\tilde{f} \times\left(1 \mathrm{GeV}^{2}\right)
\end{aligned}
$$

## - TeV Phenomenology:

## (i) $v$ mass generations:



## The neutrino masses are generated radiatively at two-loop level

$\left(m_{\nu}\right)_{a b}=\frac{1}{\sqrt{2}} g^{4} m_{a} m_{b} v_{T} Y_{a b} \sin (2 \delta)\left[I\left(M_{W}^{2}, M_{P_{1}}^{2}, m_{a}, m_{b}\right)-I\left(M_{W}^{2}, M_{P_{2}}^{2}, m_{a}, m_{b}\right)\right]$
$\left[\begin{array}{l}I\left(M_{W}^{2}, M_{P_{i}}^{2}, m_{a}^{2}, m_{b}^{2}\right)= \\ \int \frac{d^{4} q}{(2 \pi)^{4}} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{1}{k^{2}-m_{a}^{2}} \frac{1}{k^{2}-M_{W}^{2}} \frac{1}{q^{2}-M_{W}^{2}} \frac{1}{q^{2}-m_{b}^{2}} \frac{1}{(k-q)^{2}-M_{P_{i}}^{2}}\end{array} \quad I\left(M_{W}^{2}, M_{\left.P_{i}, 0,0\right)}^{2}>M_{W} \frac{1}{(4 \pi)^{4}} \frac{1}{M_{P_{i}}^{2}} \log ^{2}\left(\frac{M_{W}^{2}}{M_{P_{i}}^{2}}\right)\right.\right.$

$$
m_{\nu}=\tilde{f}\left(M_{P_{1}}, M_{P_{2}}\right) \times\left(\begin{array}{ccc}
m_{e}^{2} Y_{e e} & m_{e} m_{\mu} Y_{e \mu} & m_{e} m_{\tau} Y_{e \tau} \\
m_{e} m_{\mu} Y_{e \mu} & m_{\mu}^{2} Y_{\mu \mu} & m_{\tau} m_{\mu} Y_{\mu \tau} \\
m_{e} m_{\tau} Y_{e \tau} & m_{\tau} m_{\mu} Y_{\mu \tau} & m_{\tau}^{2} Y_{\tau \tau}
\end{array}\right)
$$

$$
=f\left(M_{P_{1}}, M_{P_{2}}\right) \times\left(\begin{array}{lcc}
2.6 \times 10^{-7} Y_{e e} & 5.4 \times 10^{-5} Y_{e \mu} & 9.1 \times 10^{-4} Y_{e \tau} \\
5.4 \times 10^{-5} Y_{e \mu} & 1.1 \times 10^{-2} Y_{\mu \mu} & 0.19 Y_{\mu \tau} \\
9.1 \times 10^{-4} Y_{e \tau} & 0.19 Y_{\mu \tau} & 3.17 Y_{\tau \tau}
\end{array}\right) \longrightarrow\left(\begin{array}{ccc}
\varepsilon^{\prime} & \varepsilon & \varepsilon \\
\varepsilon & 1+\eta & 1+\eta \\
\varepsilon & 1+\eta & 1+\eta
\end{array}\right)
$$

$$
\tilde{f}\left(M_{P_{1}}, M_{P_{2}}\right)=\frac{\sqrt{2} g^{4} v_{T} \sin (2 \delta)}{128 \pi^{4}}\left[\frac{1}{M_{P_{1}}^{2}} \log ^{2}\left(\frac{M_{W}}{M_{P_{1}}}\right)-\frac{1}{M_{P_{2}}^{2}} \log ^{2}\left(\frac{M_{W}}{M_{P_{2}}}\right)\right]
$$

$$
f=\tilde{f} \times\left(1 \mathrm{GeV}^{2}\right)
$$

$$
\begin{array}{lcc}
Y_{e e}<0.17, & Y_{e \mu}<0.2, & Y_{e \tau}<0.2 \\
Y_{\mu \mu}<3.5, & Y_{\mu \tau}<0.2, & Y_{\tau \tau}<0.02
\end{array}
$$

## (ii) $0 v \beta \beta$ decays:


(b)


Figure 9: $0 \nu \beta \beta$ decays via exchange of: (a) doubly charged Higgs and (b) light Majorana neutrinos.

## (ii) $0 v \beta \beta$ decays:

(a)

(b)


Figure 9: $0 \nu \beta \beta$ decays via exchange of: (a) doubly charged Higgs and (b) light Majorana neutrinos.

$$
A_{P_{1,2}-} \sim \frac{g^{4} Y_{e e} v_{T} \sin 2 \delta}{16 \sqrt{2} M_{W}^{4}}\left(\frac{1}{M_{P_{1}}^{2}}-\frac{1}{M_{P_{2}}^{2}}\right)
$$

$$
A_{\nu} \sim \frac{g^{4}}{M_{W}^{4}} \frac{m_{e e}}{<p>^{2}}
$$

$$
<p>\sim 0.1 \mathrm{GeV}
$$

## (ii) $0 v \beta \beta$ decays:

(a)

(b)


Figure 9: $0 \nu \beta \beta$ decays via exchange of: (a) doubly charged Higgs and (b) light Majorana neutrinos.

$$
A_{P_{1,2}^{--}} \sim \frac{g^{4} Y_{e e} v_{T} \sin 2 \delta}{16 \sqrt{2} M_{W}^{4}}\left(\frac{1}{M_{P_{1}}^{2}}-\frac{1}{M_{P_{2}}^{2}}\right) \quad \gg A_{\nu} \sim \frac{g^{4}}{M_{W}^{4}} \frac{m_{e e}}{\left\langle p>^{2}\right.} \quad<p>\sim 0.1 \mathrm{GeV}
$$

The smallness of this ratio is due to the fact that in our model, $m_{e e}$ is suppressed not only by a two-loop factor, it is also suppressed by the electron mass factor $\left(m_{e} / M_{W}\right)^{2}$ coming from the doubly charged scalar coupling.

Black box theorem is irrelevant as $0 \nu \beta \beta$ dominantly arises from the SD contribution arkiv:1402.0515 lhen-phl

$$
\frac{C_{a b}^{(9)}}{\tilde{\Lambda}} \bar{\ell}^{c} R_{a} \ell_{R_{b}} W_{\mu}^{+} W^{+\mu} \quad \mathcal{O}^{9} \equiv C_{a b}^{(9)} \bar{\ell}^{c} R_{a} \ell_{R_{b}}\left[\left(D_{\mu} H\right)^{T} i \sigma_{2} H\right]^{2}
$$

dimension-9
L violating O

$$
\frac{C_{a b}^{(9)}}{\tilde{\Lambda}} \bar{\ell}^{c}{ }_{R_{a}} \ell_{R_{b}} W_{\mu}^{+} W^{+\mu} \quad \mathcal{O}^{9} \equiv C_{a b}^{(9)} \bar{\ell}^{c} R_{R_{a}} \ell_{R_{b}}\left[\left(D_{\mu} H\right)^{T} i \sigma_{2} H\right]^{2}
$$

dimension-9
L violating $\mathbf{O}$


$$
m_{a b}^{\nu} \sim\left(\frac{1}{16 \pi^{2}}\right)^{n} C_{a b}^{(9)} \frac{m_{l_{a}} m_{l_{b}}}{\Lambda}
$$

n=\# of loops

$$
\begin{aligned}
& \mathcal{L}_{0 \nu \beta \beta}=\frac{G_{F}^{2}}{2 m_{p}} \epsilon_{3} J^{\mu} J_{\mu} \bar{e}\left(1-\gamma_{5}\right) e^{c} \\
& J^{\mu}=\bar{u} \gamma^{\mu}\left(1-\gamma_{5}\right) d . \quad \epsilon_{3}=-2 m_{p} \mathcal{A}_{0 \nu \beta \beta}^{\mathrm{SD}}
\end{aligned}
$$

## (iii) Other physics: <br> Multi Charged Scalars

## a. Lepton flavor physics:

1. Muonium anti-muonium conversion $\mu^{+} e^{-}-\mu^{-} e^{+} \quad H_{M \bar{M}}=\frac{Y_{e \ell} Y_{\mu \mu}}{2 M_{-}^{2}} \bar{\mu} \gamma^{\mu} e_{R} \bar{\mu} \gamma_{\mu} e_{R}+$ h.c. ,
2. Effective $e^{+} e^{-} \rightarrow l^{+} l^{-}, l=e, \mu, \tau$, contact interactions

$$
\frac{Y_{e e}^{2}}{M_{--}^{2}} \bar{e}_{R} \gamma^{\mu} e_{R} \bar{e}_{R} \gamma_{\mu} e_{R}
$$

3. Rare $\mu \rightarrow 3 e$ decays and its $\tau$ counterparts
4. Radiative flavor violating charged leptonic decays

$$
\operatorname{Br}(\mu \rightarrow e \gamma)=\frac{\alpha}{3 \pi G_{F}^{2}} \sum_{l=e, \mu, \tau}\left(\frac{Y_{l \mu} Y_{l_{e}}}{M_{--}^{2}}\right)^{2}
$$

## (iii) Other physics: <br> Multi Charged Scalars

a. Lepton flavor physics:

1. Muonium anti-muonium conversion $\mu^{+} e^{-}-\mu^{-} e^{+} \quad H_{M \bar{M}}=\frac{Y_{e} Y_{\mu \mu}}{2 M_{--}^{2}} \bar{\mu} \gamma^{\mu} e_{R} \bar{\mu} \gamma_{\mu} e_{R}+$ h.c. ,
2. Effective $e^{+} e^{-} \rightarrow l^{+} l^{-}, l=e, \mu, \tau$, contact interactions $\quad \frac{Y_{e e}^{2}}{M_{--}^{2}} \bar{e}_{R} \gamma^{\mu} e_{R} \bar{e}_{R} \gamma_{\mu} e_{R}$
3. Rare $\mu \rightarrow 3 e$ decays and its $\tau$ counterparts
4. Radiative flavor violating charged leptonic decays

$$
B r(\mu \rightarrow e \gamma)=\frac{\alpha}{3 \pi G_{F}^{2}} \sum_{l=e, \mu, \tau}\left(\frac{Y_{l l} Y_{l e}}{M_{--}^{2}}\right)^{2}
$$

## b. Doubly charged scalars at the LHC:

1 Production of the doubly charged Higgs
WW fusion processes similar to $0 v \beta \beta$ decays + Drell-Yan Annihilation processes

$$
q \bar{q} \rightarrow \gamma^{*}, Z^{*} \rightarrow P_{1}^{++} P_{1}^{--} \quad(q=u, d)
$$



2 The decay of $P_{1}^{ \pm \pm}$
(1) $P_{1}^{ \pm \pm} \rightarrow l_{a R}^{ \pm} l_{b R}^{ \pm} \quad(a, b=e, \mu, \tau)$,
(2) $P_{1}^{ \pm \pm} \rightarrow W^{ \pm} W^{ \pm}$,
(3) $P_{1}^{ \pm \pm} \rightarrow P^{ \pm} W^{ \pm}$,
(4) $P_{1}^{ \pm \pm} \rightarrow P^{ \pm} P^{ \pm}$,
(5) $P_{1}^{ \pm \pm} \rightarrow W^{ \pm} W^{ \pm} X^{0}, \quad X^{0}=T_{a}^{0}, h^{0}, P^{0}$
(6) $P_{1}^{ \pm \pm} \rightarrow P^{ \pm} P^{ \pm} X^{0}$.
(4) and (6) are not allowed in our model,


## c. Triply charged scalar decays:

$$
\begin{aligned}
& \Gamma\left(\Phi^{+++} \rightarrow 3 W\right)=\frac{3 g^{6}}{2048 \pi^{3}} \frac{v_{\Phi}^{2} M_{\Phi}^{5}}{m_{W}^{6}} . \\
& \Gamma\left(\Phi^{+++} \rightarrow W^{+} \ell^{+} \ell^{+}\right)=\frac{g^{2}}{6144 \pi^{3}} \frac{M_{\Phi} \sum_{i} m_{i}^{2}}{v_{\Phi}^{2}}
\end{aligned}
$$

$$
\underbrace{\xi^{+++}} \operatorname{s}^{++} \operatorname{N}^{+}
$$

$$
\xrightarrow[\xi^{+++}]{W^{++} \Phi^{++}<e_{R}^{c}} e^{\xi^{c}}
$$


d. Same-sign single dilepton signatures: $p p \rightarrow \ell_{i}^{ \pm} \ell_{j}^{ \pm} \underline{X}, J J$


Chen, CQG, Zhuridov, Eur.Phys.J.C60,119(2009)

$$
\frac{d \sigma_{ \pm}^{p p}}{d \cos \theta}=A\left(\lambda_{1}^{i j}\right)^{2} H_{ \pm}^{p p}
$$

$$
\begin{aligned}
A & =\frac{G_{F}^{4} M_{W}^{6}}{2^{7} \pi^{5}}=50 \mathrm{ab}, \lambda_{1}^{i j}=\sqrt{2-\delta_{i j}}\left|Y_{i j}\right| c_{\delta} s_{\delta}, \\
H_{ \pm}^{p p} & =\left(\frac{v_{T}}{M_{W}}\right)^{2} \int_{z_{0}}^{1} \frac{d z}{z} \int_{z}^{1} \frac{d y}{y} \int_{y}^{1} \frac{d x}{x} p_{ \pm}(x, x s) p_{ \pm}\left(\frac{y}{x}, \frac{y}{x} s\right) l\left(\frac{z}{y}\right) h\left(\frac{s}{M_{P_{1}}^{2}} z\right)
\end{aligned}
$$

## Remarks:

(a) In our model, the final state charged leptons are righthanded. Hence, in principle, helicity measurements can be used to distinguish between our model and those whose doubly charged Higgs coupling only to left-handed leptons.
(b) $\mathbf{P}_{1}{ }^{ \pm \pm}$will directly produce spectacular lepton \# violating signals from like-sign dileptons such as $\mathrm{e} \mu, \mathrm{e} \tau$ and $\mu \tau$.

## e. Multi charged scalar contributions to $H \rightarrow \gamma \gamma$ and $H \rightarrow Z \gamma$ :

$$
\begin{aligned}
& \left.\Gamma(H \rightarrow \gamma \gamma)=\frac{G_{F} \alpha^{2} m_{H}^{3}}{128 \sqrt{2} \pi^{3}} \right\rvert\, \sum_{f} N_{f}^{c} Q_{f}^{2} A_{\frac{1}{2}}\left(\tau_{f}\right)+A_{1}\left(\tau_{W}\right) \\
& +\left.\sum_{l_{3}}\left(l_{3}+1\right)^{2} \frac{v}{2} \frac{\mu_{s}}{m_{s}^{2}} A_{0}\left(\tau_{s}\right)\right|^{2}, \\
& \left.\Gamma(H \rightarrow Z \gamma)=\frac{G_{F} \alpha \alpha_{z} m_{H}{ }^{3}}{64 \sqrt{2} \pi^{3}} \right\rvert\, \sum_{J} N_{f}^{c} Q_{f}^{z} Q_{f} A_{12}^{z}\left(\tau_{f}, \lambda_{f}\right)+Q_{w}^{Z} A_{1}^{z}\left(\tau_{w}, \lambda_{w}\right) \\
& +\left.\sum_{s} Q_{s}^{Z} Q_{s} \frac{v}{2} \frac{\mu_{s}}{m_{s}^{2}} A_{0}^{Z}\left(\tau_{s}, \lambda_{s}\right)\right|^{2} \quad-\frac{(\mathbf{n}-1)}{2} \leq I_{s} \leq \frac{\mathbf{n}-1}{2} \\
& \xi=(1, N, 2) \text { with } N=3,5, \ldots . \\
& \text { e.g. } \xi=\left(\xi^{+++}, \xi^{++}, \xi^{+}, \xi^{0}, \xi^{-}\right)^{T} \text { for } \mathbf{N}=\mathbf{5} \\
& \mathrm{I}_{3}=(-\mathrm{N}+3) / 2 \text { to }(\mathrm{N}+1) / 2 \\
& \xi=(1, \mathbf{N}, 2) \text { with } \mathbf{N}=3,5, \ldots \\
& \text { e.g. } \xi=\left(\xi^{+++}, \xi^{++}, \xi^{+}, \xi^{0}, \xi^{-}\right)^{T} \text { for } \mathbf{N}=\mathbf{5} \\
& \mathrm{I}_{3}=(-\mathrm{N}+3) / 2 \text { to }(\mathrm{N}+1) / 2
\end{aligned}
$$




FIG. $4 \quad$ (color online). $\quad R_{\gamma \gamma} \equiv \Gamma(H \rightarrow \gamma \gamma) / \Gamma(H \rightarrow \gamma \gamma)_{\text {SM }}$ and $R_{Z \gamma} \equiv \Gamma(H \rightarrow Z \gamma) / \Gamma(H \rightarrow Z \gamma)_{\text {SM }}$ as functions of the degenerate mass factor $m_{s}$ of the multicharged scalar states with $\mathbf{n}=\mathbf{5}$ and the universal trilinear coupling to Higgs, $\mu_{s}=-100 \mathrm{GeV}$.

The correlation among $\mathrm{H} \rightarrow \mathrm{YY}$ and $\mathrm{H} \rightarrow \mathrm{Z}_{\mathrm{Y}}$ strongly depends on the Gauge representation of charged scalars
$\checkmark$ Models with multi high charged scalars are proposed with an $\operatorname{SU}(2)_{\mathrm{L}}$ multiplet and a doubly charged $\mathrm{SU}(2)_{\mathrm{L}}$ singlet.

## Summary

$\checkmark$ Models with multi high charged scalars are proposed with an $\mathrm{SU}(2)_{\mathrm{L}}$ multiplet and a doubly charged $\mathrm{SU}(2)_{\mathrm{L}}$ singlet.

- Majorana neutrino masses are generated radiatively at two-loop level with a normal neutrino mass hierarchy.


## - Summary

$\checkmark$ Models with multi high charged scalars are proposed with an $\operatorname{SU}(2)_{\mathrm{L}}$ multiplet and a doubly charged $\mathrm{SU}(2)_{\mathrm{L}}$ singlet.

- Majorana neutrino masses are generated radiatively at two-loop level with a normal neutrino mass hierarchy.
- The neutrinoless double beta ( $0 v \beta \beta$ ) decays can be sizable due to the tree exchange processes involving the doubly charged scalars (short-range), whereas the long-range contributions from Majorana neutrinos are negligible.


## - Summary

- Models with multi high charged scalars are proposed with an $\operatorname{SU}(2)_{\mathrm{L}}$ multiplet and a doubly charged $\mathrm{SU}(2)_{\mathrm{L}}$ singlet.
- Majorana neutrino masses are generated radiatively at two-loop level with a normal neutrino mass hierarchy.
- The neutrinoless double beta ( $0 v \beta \beta$ ) decays can be sizable due to the tree exchange processes involving the doubly charged scalars (short-range), whereas the long-range contributions from Majorana neutrinos are negligible.

マ Rich TeV phenomenology for lepton flavor processes and the LHC physics due to the multi high charged scalars.

## - Summary

- Models with multi high charged scalars are proposed with an $\mathbf{S U}(2)_{\mathrm{L}}$ multiplet and a doubly charged $\mathrm{SU}(2)_{\mathrm{L}}$ singlet.
- Majorana neutrino masses are generated radiatively at two-loop level with a normal neutrino mass hierarchy.
- The neutrinoless double beta ( $0 v \beta \beta$ ) decays can be sizable due to the tree exchange processes involving the doubly charged scalars (short-range), whereas the long-range contributions from Majorana neutrinos are negligible.

マ Rich TeV phenomenology for lepton flavor processes and the LHC physics due to the multi high charged scalars.

Future data on $0 v \beta \beta$ decays and the LHC searches would distinguish our models from other neutrino models.

## 2nd International Workshop on

## Particle Physics and Cosmology after Higgs and Planck後希格斯與普朗克粒子物理與宇宙學國際研討會

October 8－11， 2014 National Center for Theoretical Sciences，NTHU，Hsinchu，Taiwan

## Home

Home

| Information |
| :--- |
| Commitee |
| Program |
| Registration |
| Participants |
| Venue |
| Accommodation |
| Visa |
| Contact |
| Photo |

Previous Workshop：

## Thank you!



