

Parton Distributions at High Energy Colliders

C.-P. Yuan Michigan State University

In collaboration with CTEQ-TEA

9th Workshop of TeV Physics WG May 15-18, 2014@ Sun Yat-sen Univ., Guangzhou, China

CTEQ-TEA group

• CTEQ – Tung et al. (TEA)

in memory of Prof. Wu-Ki Tung, who established CTEQ Collaboration in early 90's

• Current members:

Sayipjamal Dulat (Xinjiang Univ.)

Tie-Jiun Hou (Academia Sinica, Taipei)

Southern Methodist Univ. -- Pavel Nadolsky, Jun Gao, Marco Guzzi

Michigan State Univ. -- Joey Huston, Jon Pumplin, Dan Stump, Carl Schmidt, CPY

Back to 2012

March 8, 2012: Daya Bay Neutrino
 Experiment; θ13

•July 4: Higgs Discovery at LHC

November 12-15: 7th TeV Workshop

Center for High Energy Physics Tsinghua University

7th Workshop on TeV Physics In honor of Prof Yu-Ping Kuang

2012 November (12-15th)

A Long Time Ago

 1984-1985: Prof. Gordy Kane asked me to compare parton luminosities at various pp or p-pbar collider energies; to compare their physics potential, particularly, on probing the Electroweak Symmetry Breaking sector via studying

Need to know

- Parton Distribution Functions
- Effective W approximation

Another important ingredient

Goldstone Boson Equivalence Theorem

• In general, the modification factor C(mod) is not 1 beyond the tree level.

York-Peng Yao and CPY; PRD 38 (1988) 2237 J. Bagger and C. Schmidt; PRD 41 (1990) 264

• C(mod) can be made to be 1 in a special renormalization scheme. (See next slide.)

Prof. Yu-Ping Kuang and me

- 1992: referee of PRL 69 (1992) 2619
- "On the precise formulation of equivalence theorem", by

Hong-Jian He, Yu-Ping Kuang and Xiao-Yuan Li

- 1993: my first trip to China (CCAST); followed by many collaborations on studying the Electroweak Symmetry Breaking sector.
- 1997-2000: Hong-Jian He joined MSU, as a postdoc; initiating further collaborations.

$WW \rightarrow WW$

- In the SM, Higgs boson ensures its unitarity.
- If the coupling of H-W-W deviates from the SM, then unitarity is violated.

Bin Zhang, Yu-Ping Kuang, Hong-Jian He, CPY; PRD 67 (2003) 114024

 Require New Physics to restore unitarity up to some higher energy scale. It generally implies new resonance states, such as scalar, vector, tensor, or fermion states.

Parton Distribution Functions

Needed for making theoretical calculations to compare with experimental data

Hadron Collider Physics

CT10 NNLO update and QED effects in PDFs

Carl Schmidt Michigan State University

On behalf of CTEQ-TEA group

April 29, 2014 DIS2014, Warsaw, Poland

CT10NNLO vs. fitted data

Fits well: $\chi^2 / N_{pt} = 2950/2641 = 1.11$

13

CT10, CT1X, and LHC data

- We have since included early (7 TeV) LHC data: Atlas W/Z production and asymmetry at 7 TeV, Atlas single jet inclusive, CMS W asymmetry, HERA F_L and F_2^c
- More flexible parametrization gluon, d/u at large x and both, d/u and dbar/ubar at small x, strangeness, and s sbar.
- Improvements modest so far, but expectation from ttbar, W/Z, Higgs, etc.

Data is already more precise than current PDF uncertainty.

Will help to determine PDFs in small x region.

Most useful for determining dbar/ubar.

Photon PDFs (in proton)

γ momentum fraction:		
$p^{\gamma}(Q)$	$\gamma(x,Q_0)=0$	$\gamma(x,Q_0)_{\rm CM}$
Q = 3.2 GeV	0.05%	0.34%
Q = 85 GeV	0.22%	0.51%

Photon PDF can be larger than sea quarks at large x!

Initial Photon PDF still \leftarrow significant at large Q.

Uncertainties on H and ttbar Predictions at the LHC (and update on Intrinsic Charm)

> Carl Schmidt Michigan State University

On behalf of CTEQ-TEA group

April 29, 2014 DIS2014, Warsaw, Poland

17

Some basics about PDFs

- Parton Distribution Function f(x, Q)
- Given a heavy resonance with mass Q produced at hadron collider with c.m. energy
- What's the typical x value?

$$< x >= \frac{Q}{\sqrt{S}} \text{ at central rapidity (y=0)}$$

• Generally, $x_1 = \frac{Q}{\sqrt{S}} e^y$ and $x_2 = \frac{Q}{\sqrt{S}} e^{-y}$
 $x_1 + x_2 = 2\frac{Q}{\sqrt{S}} \cosh(y) \longrightarrow y_{\max} : x_1 + x_2 = 1$

Kinematics of a 100 TeV SppC

Kinematics of a 100 TeV FCC

On to a 100 TeV SppC

CT10 NNLO PDFs

- PDF error bands
 - u and d PDFs are best known
 - currently no constraint for x below 1E-4
 - large error for x above 0.3
 - larger sea (e.g., ubar and dbar) quark uncertainties in large x region
 - with non-perturbative parametrization form dependence in small and large x regions
- PDF eigensets
 - useful for calculating PDF induced uncertainty
 - sensitive to some special (combination of) parton flavor(s).

(e.g., eigenset 7 is sensitive to d/u or dbar/ubar; hence, W asymmetry data at Tevatron and LHC.)

CT10 NNLO PDFs

x f(x,Q) versus x

Figure 3: CT10-NNLO parton distribution functions. These figures show the *alternate fits* for the CT10-NNLO analysis. Each graph shows $x u_{\text{valence}} = x(u - \overline{u}), x d_{\text{valence}} = x(d - \overline{d}), 0.10 x g$ and $0.10 x \overline{q}$ sea as functions of x for a fixed value of Q. The values of Q are 2, 3.16, 8, 85 GeV. Sea = $2(\overline{d} + \overline{u} + \overline{s})$. The dashed curves are the central NLO fit, CT10.

PDF luminosities

$$\sigma = \int dx_1 dx_2 \ g(x_1, M) g(x_2, M) \widehat{\sigma}(M)$$

$$= \int dT dY \ g(x_1, M) g(x_2, M) \widehat{\sigma}(M)$$

$$\equiv \int dM^2 \frac{dL}{dM^2} \widehat{\sigma}(M)$$
PDF Luminosity
$$\tau = x_1 x_2$$

$$y = \frac{1}{2} \ln\left(\frac{x_1}{x_2}\right)$$

$$y = \frac{1}{2} \ln\left(\frac{x_1}{x_2}\right)$$

$$y = \frac{1}{2} \ln\left(\frac{x_1}{x_2}\right)$$

Top quark as a parton

- For a 100 TeV SppC, top mass (172 GeV) can be ignored; top quark, just like bottom quark, can be a parton of proton.
- Top parton will take away some of the momentum of proton, mostly, from gluon (at NLO).
- Need to use s-ACOT scheme to calculate hard part matrix elements, to be consistent with CT10 PDFs.

Momentum fraction inside proton

CT10 Top PDFs (Q=2 TeV)

CT10 NNLO, $N_F = 6$

Hard part calculation

- S-ACOT scheme
- Example: single-top production

Summary

- PDFs have larger uncertainties in both small x and large x regions.
- PDFs will be further determined by LHC data.
- Photon can be treated as a parton inside proton.
- In a 100TeV SppC, top quark can be a parton of proton, consistent hard part calculations are needed.