Probing Anomalous Heavy Neutral Higgs Boson at the LHC via VV Scattering & VH Associated Production

Hong-Yu Ren & Ling-Hao Xia on behalf of **Prof. Yu-Ping Kuang** (*Center for High Energy Physics, Tsinghua University*)

9th Workshop of TeV Physics Working Group, SYSU, Guangzhou, May 16-18, 2014

Contents

Background

- **by Unitarity**
 - **by Experiments on 7-8 TeV LHC**
- Probing the Heavy Neutral Higgs Boson
 - via Weak-Boson Scattering
 - via VH Associated Production
- Determining the Parameters
- ➡ Summary

<u>arXiv:1404.6367</u>, <u>arXiv:1404.6594</u>

Anomalous Couplings of the Heavy Neutral Higgs Bosons Constraints on the Anomalous Coupling Parameters

Measuring the Mass of Heavy Higgs Measuring the Anomalous Couplings Constants

Background

The discovery of the ~125GeV Higgs Boson is a triumph, but seemingly not the end...

Searching for new physics (NP) beyond SM is the most important goal of the future particle physics

Theoretical Clues: the Triviality Problem, UnNaturalness, the Dark Matter...

We study the **NP** containing more than one Higgs Bosons

In many new physics models (2HDM, MSSM, LRSM, etc), the lightest Higgs boson: a SM-like Higgs boson • other heavy Higgs bosons: usually with mass ~TeV, maybe within the searching ability of LHC

However, searching for heavy Higgs boson model by model is not an efficient way

So we choose a model-independent way, using the dim-6 effective Lagrangian to describe the anomalous Higgs interaction

Anomalous Couplings of the Heavy Neutral Higgs Bosons

Our goal is to search for the Non-Standard Model (NS) heavy neutral Higgs boson at the 14TeV LHC

Let ϕ_1, ϕ_2, \dots be original Higgs field with the potential $V(\phi_1, \phi_2, ...)$, which causes mixing between the Higgs fields.

Let ϕ_h , ϕ_H be the lightest Higgs and a heavier neutral Higgs fields with Higgs bosons h, H

The mixing generates the VEVs v_h, v_H , and the effective Higgs-Gauge coupling constant g_h, g_H .

Itreated as a SM-like Higgs with negligible anomalous couplings

A heavy neutral Higgs boson H with not so small gauge interaction • model-independent formulation of its gauge and Yukawa couplings based on effective Lagrangian

The ~125GeV Higgs boson h

Anomalous Couplings of the Heavy Neutral Higgs Bosons : Dim-4

Yukawa Couplings

Multi-Higgs-fermion couplings are irrelevant to our study. So up to dim-6, there is no new coupling form other than the Yukawa couplings

- ▶ Ct is most relevant since it concerns the H-g-g and H-t-t couplings, but has no clear experimental constraints
- Type-I $C_t \sim 1$
- **Type-II** $C_t < 1$
- ► Constraint

$$M_f = \frac{1}{\sqrt{2}} y_f^{\rm SM} = \frac{1}{\sqrt{2}} (y_f^h v_h + y_f^H v_H + \cdots)$$

Gauge Couplings

The dim-4 Higgs-gauge couplings of *h* and *H* have the similar forms

$$\mathcal{L}_{H_{\rm SM}VV}^{(4)} \propto g^2 v H_{\rm SM} V_{\mu} V^{\mu}$$

$$\mathcal{L}_{hVV}^{(4)} \propto g_h^2 v_h h V_\mu V^\mu = \rho_h g^2 v h V_\mu V^\mu \qquad \rho_h = \frac{g_h}{g_h}$$

$$\mathcal{L}_{HVV}^{(4)} \propto g_H^2 v_H H V_\mu V^\mu = \rho_H g^2 v H V_\mu V^\mu \quad \rho_H = \frac{g_H^2}{g_H^2}$$

- The anomalous form differs from the SM form only by an extra factor ρ_h (ρ_H)
- Constraint

$$M_W^2 = \frac{1}{4}g^2v(\rho_h v_h + \rho_H v_H + \cdots)$$

Anomalous Couplings of the Heavy Neutral Higgs Bosons : Dim-6

Gauge Couplings momentum-dependent, sensitive to high energies

$$\begin{aligned} \mathcal{C}_{HVV}^{(6)} &= \sum_{n} \frac{f_{n}}{\Lambda^{2}} \mathcal{O}_{n} \\ \mathcal{O}_{WW} &= \Phi_{H}^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi_{H}, \\ \mathcal{O}_{BB} &= \Phi_{H}^{\dagger} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \Phi_{H}, \\ \mathcal{O}_{W} &= (D_{\mu} \Phi_{H})^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi_{H}), \\ \mathcal{O}_{B} &= (D_{\mu} \Phi_{H})^{\dagger} \hat{B}^{\mu\nu} (D_{\nu} \Phi_{H}). \end{aligned}$$

The relevant dim-6 effective Lagrangian expressed in weak boson field and H

$$\begin{aligned} \mathcal{L}_{eff}^{H} &= g_{H\gamma\gamma} H A_{\mu\nu} A^{\mu\nu} \\ &+ g_{HZ\gamma}^{(1)} A_{\mu\nu} Z^{\mu} \partial^{\nu} H + g_{HZ\gamma}^{(2)} H A_{\mu\nu} Z^{\mu\nu} \\ &+ g_{HZZ}^{(1)} Z_{\mu\nu} Z^{\mu} \partial^{\nu} H + g_{HZZ}^{(2)} H Z_{\mu\nu} Z^{\mu\nu} \\ &+ g_{HWW}^{(1)} (W_{\mu\nu}^{+} W^{-\mu} \partial^{\nu} H + \text{H.c.}) + g_{HWW}^{(2)} H W_{\mu\nu}^{+} W^{-\mu\nu} \end{aligned}$$

$$\begin{split} g_{H\gamma\gamma} &= -\kappa \frac{s^2 (f_{BB} + f_{WW})}{2\Lambda^2}, \\ g_{HZ\gamma}^{(1)} &= \kappa \frac{s (f_W - f_B)}{2c\Lambda^2}, \quad g_{HZ\gamma}^{(2)} = \kappa \frac{s [s^2 f_{BB} - c^2 f_{WW}]}{c\Lambda^2}, \\ g_{HZZ}^{(1)} &= \kappa \frac{c^2 f_W + s^2 f_B}{2c^2\Lambda^2}, \quad g_{HZZ}^{(2)} = -\kappa \frac{s^4 f_{BB} + c^4 f_{WW}}{2c^2\Lambda^2}, \\ g_{HWW}^{(1)} &= \kappa \frac{f_W}{2\Lambda^2}, \quad g_{HWW}^{(2)} = -\kappa \frac{f_{WW}}{\Lambda^2}, \end{split}$$

 $\kappa = \rho_H g M_W$

Constraints on the Anomalous Coupling Constants : by Unitarity

The momentum-dependence of the anomalous couplings may violate the unitarity of the LO S-matrix at high energies.

Needing to be recalculated because there are two Higgs bosons in our theory

Longitudinal W bosons scattering gives the most strict constraints

 $|S^{\dagger}S| = |1 - 1|$

 $i\mathcal{M}(\lambda_i\lambda_i \to$

are shown:

$$-iT|^{2} = 1 \Leftrightarrow (\operatorname{Re}\langle a|T|a\rangle)^{2} + \sum_{|b\rangle\neq|a\rangle} |\langle b|T|a\rangle|^{2} \leq 1$$
$$\lambda_{f}\lambda_{f}) = 16\pi \sum_{J} (J + \frac{1}{2})\langle\lambda_{f}\lambda_{f}|iT^{J}|\lambda_{i}\lambda_{i}\rangle P_{J}(\cos\theta)$$

Expand the LO amplitude by partial wave, and the S-wave results

 $E_{\rm CM} = 3 {\rm TeV}$

Constraints on the Anomalous Coupling Constants : by Experiments

 $H\gamma\gamma$ & $HZ\gamma$ Sensitive to dim-6 anomalous couplings, and the results of the experiments show no trend to be distinguished from SM

$$H \to \gamma \gamma \quad \rightleftharpoons \quad f_{BB} \approx -f_{WW}$$

 $H \to Z \gamma \quad \diamondsuit \quad f_B \approx f_W - 4f_{WW}$

• Five parameters left :

 $C_t, \rho_h, \rho_H, f_W, f_{WW}$

 $\sigma = \sigma$

The experimental constraints are derived from the 95% CL upper limits on $\mu = \sigma / \sigma_{exp}$

$$(pp \to H + \cdots) \frac{\Gamma(H \to X)}{\Gamma(H \to ZZ) + \Gamma(H \to WW) + \cdots}$$

- The strongest constraint on a SM Higgs boson is the CMS result obtained from the channel $H \rightarrow ZZ \rightarrow 4l$
- Other channels are also taken into consideration

 $M_H = 400 \text{GeV}, 500 \text{GeV}, 800 \text{GeV}$ are taken as examples to do the analysis

Constraints on the Anomalous Coupling Constants : by Experiments

	Type-I	Type-II
$M_H = 400 \text{GeV}$	Hardly avoid being excluded	Figure (a)
$M_H = \mathbf{500GeV}$	Figure (b)	Figure (c)
$M_H = \mathbf{800 GeV}$	Almost all values of f_W and f_{WW} and Higgs boson not exclude	re available to make the heavy neutral d by the exclusion bound

Probing Heavy Neutral Higgs Boson **Parameters and Statistacal method**

As the Type-I 400GeV heavy Higgs can hardly avoid being excluded, so we take the five set of parameters as below to do simulation, according to the former analysis:

	M _H	C _t	P h	ρ _Η	$\rho_H f_W / \Lambda^2 (\text{TeV}^{-2})$	$ ho_H f_{WW} / \Lambda^2 (\mathrm{TeV}^{-2})$
400II	400	0.5	0.9	0.4	14	0
500I	500	1	0.9	0.4	30	10
500II	500	0.6	0.8	0.6	6	-5
800I	800	1	0.8	0.6	6	-5
800II	800	0.2	0.9	0.25	6	-5

We take Poisson Distribution to determine the statistic significance σ_{stat} as below.

✓ Signal and Background Cross Sections: $\sigma_{R} \equiv \sigma(C_{t} = 1, \rho_{h} = 1, \rho_{H} = 0, f_{W} = 0, f_{WW} = 0), \quad \text{and} \quad \sigma_{S} \equiv \sigma - \sigma_{B}$ ✓ Statistical Significance Using Poisson Distribution: $P_B = \sum_N e^{-N_B} \frac{N_B^N}{N_1}$, with $N = N_S + N_B, N_S + N_B + 1, \dots, \infty$

 \checkmark When N_B is sufficiently large, we can approximate σ_{stat} by: $\sigma_{stat} = \frac{N_S}{\sqrt{N_B}}$

Probing Heavy Neutral Higgs Boson via Weak-Boson Scattering: Signal & IB

Signal processes:

Weak-boson scattering with a s/t-channel heavy Higgs. A *W*+ decays leptonicly and the other weak boson decays to quarks in the final state.

Typical irreducible background:

calculated together with signal processes.

Probing Heavy Neutral Higgs Boson via Weak-Boson Scattering: RBs

Typical W+jjj background:

match partons with jets up to the multiplicity of 3.

Typical QCD WV+jj background:

a W+ decays leptonicly and a V decays to a fat jet

Typical Top quark background:

a top decays leptonicly and the other decays hadronicly

Probing Heavy Neutral Higgs Boson via Weak-Boson Scattering: MC & Cuts

Detector acceptance:

 $|\eta| \leq 5$ and $p_T \geq 20$ GeV for jets $|\eta| \le 2.5$ and $p_T \ge 10$ GeV for electrons $|\eta| \leq 2.4$ and $p_T \geq 10$ GeV for muons Jet algorithm: anti-kT with R=0.7 Cut 1: lepton number cut $N(l^+) = 1, N(l^-) = 0$ and $|\eta(l^+)| < 2$ Cut 2: p_T cut $p_T(leptons) > 150GeV$ Cut 3: forward jet cut $p_T(j^f) > 35 GeV \text{ and } E(j^f) > 300 GeV$ $2 < |\eta(j^f)| < 5 \text{ and } \eta(j_1^f) \eta(j_2^f) < 0$ Cut 4: fat jet cut $70 GeV < M(J) < 100 GeV \text{ and } |\eta_I| < 2$

Cut 5: top quark veto

Reject events with *130GeV***<***M*(*J*,*j*)**<***240GeV*

Plot after cut 1 for pT of leptons

Plot after cut 4 for invariant mass of the fat jet and any other jet

Probing Heavy Neutral Higgs Boson via Weak-Boson Scattering: Result

	$L_{int}(fb^{-1})$ needed by a required significance					
σ_{stat}	400I	500I	500II	8001	800II	
1 σ	32	34	3.9	12	5.7	
3σ	288	307	35	110	52	
3σ	800	852	96	306	143	

500II and 800II:

hopeful to be discovered (at the 5σ level) in the first few years run of the 14 TeV LHC **800I:**

can be discovered (at the 5σ level) for an integrated luminosity of 300fb^{-1} at the 14TeV LHC

can have evidences (at the 3σ level) for an integrated luminosity of 300fb^{-1} at the 14TeV LHC

Note:

Since there is a missing neutrino in the final state, we have to search transverse mass distribution to measure the heavy Higgs mass. Unfortunately, a steep descent M_H can not be clearly seen.

Probing Heavy Neutral Higgs Boson via VH Associated Production: Signal, IB & RBs

Signal processes:

associated heavy Higgs production with the Higgs decays to weak bosons. The W+ decays leptonicly and the other two weak bosons decay to quarks.

Typical irreducible background:

calculated together with signal processes.

Reducible backgrounds:

✓ *W* + *n*-*jet* processes with $n \le 3$

✓ W + V + n-jet processes with $n \le 2$

✓ Top-quark background

The diagrams are about the same with weak boson scattering.

Probing Heavy Neutral Higgs Boson via VH Associated Production: MC & cuts

Detector acceptance:

$$\begin{split} |\eta| &\leq 5 \text{ and } p_T \geq 20 \text{GeV for jets} \\ |\eta| &\leq 2.5 \text{ and } p_T \geq 10 \text{GeV for electrons} \\ |\eta| &\leq 2.4 \text{ and } p_T \geq 10 \text{GeV for muons} \end{split}$$

anti-kT with R=0.7

 J_1/J_2 denotes the jet with the 1st/2nd largest p_T

Cut 1: lepton p_T cut

 $N(l^+) = 1, N(l^-) = 0, p_T(leptons) > 400GeV$

Cut 2: fat jet cut

 $70GeV < M(J_1) < 100GeV$ $70GeV < M(J_2) < 100GeV$

Cut 3: top quark veto

Reject events with $130GeV < M(J_1, j) < 240GeV$

Cut 4: ΔR cut

 $\Delta R(J_1, l^+) > 2.5 \text{ and } \Delta R(J_2, l^+) > 0.7$

Plot after cut 2 for invariant mass of the fat jet and any other jet

Plot after cut 3 for $\Delta R(J_1, l^+)$

Probing Heavy Neutral Higgs Boson via VH Associated Production: Cut efficiencies

Cut efficiencies for VH associated production are show below (in fb)

	data	Initial	Cut 1	Cut 2	Cut 3	Cut 4
	400II	2085	46.9	2.78	2.32	2.04
	500I	2009	25.7	1.21	1.08	0.92
σ_{S+IB}	500II	2037	54.4	4.36	3.79	3.11
	800II	1996	25.3	1.41	1.24	1.11
	800I	1917	18.6	0.63	0.53	0.43
	IB	1925	13.1	0.21	0.13	0.06
	w+njets	31500000	1422	2.91	2.15	1.39
O B	tt	92000	65.9	0.72	0.15	0.06
	wvjj	7600	47.9	0.34	0.25	0.18

Probing Heavy Neutral Higgs Boson via VH Associated Production: Result

The result for associated VH production

	$L_{int}(fb^{-1})$ needed by a required significance				
σ _{stat}	400I	500I	500II	8001	800II
1 σ	0.43	0.18	2.3	13	1.6
3σ	3.9	1.6	21	115	14
3σ	10.8	4.5	57	319	39

400I 500I 500II 800II:

hopeful to be discovered (at the 5σ level) in the first few years run of the 14 TeV LHC
800I:

can be discovered (at the 5σ level) for an integrated luminosity of 300fb^{-1} at the 14TeV LHC

Probing Heavy Neutral Higgs Boson **Comparison of the two detecting methods**

For associated VH production

	$L_{int}(fb^{-1})$ needed by a required significance					
o stat	400I	500I	500II	8001	800II	
1 σ	0.43	0.18	2.3	13	1.6	
3σ	3.9	1.6	21	115	14	
3σ	10.8	4.5	57	319	39	

For weak boson scattering

		$L_{int}(fb^{-1})$ nee	eded by a requir	ed significance	
σ _{stat}	400I	500I	500II	8001	800II
1 <i>o</i>	32	34	3.9	12	5.7
3σ	288	307	35	110	52
3σ	800	852	96	306	143

Determining the parameters Measuring the mass of heavy Higgs

- If *H* is there, how can we find its mass?
- H should not be too large.

 \checkmark Weak boson scattering: No! There is missing energy and M_T does not has a significant signature.

Determining the parameters Measuring the Anomalous Coupling Constants

If we can measure the anomalous coupling constants f_W and f_{WW} , it

ρ_h	ρ _Η	f _W	<i>f_{ww}</i>
0.8	0	0	0
0.8	0.6	6	-6
0.8	0.6	12	0
0.8	0.6	0	12

Summary

- Lagrangian up to dim-6 operators.
- found that the associated VH production is more sensitive.

→ To search for new physics beyond SM, we suggest to search for heavy neutral **Higgs bosons** which are generally contained in new physics models.

 \rightarrow We identify the lightest mass eigenstate h as the recently discovered ~125GeV Higgs, and study model independently the properties of the fermion and gauge couplings of both h and a heavier neutral Higgs boson H, based on the effective

• We estimate the constraints of the anomalous couplings constants according to the unitarity requirement and the 95%CL upper limits of LHC experiments.

 \blacktriangleright We propose VV scattering and associated VH production as two processes to detect H, both of which are semi-leptonic. We gave the Monte Carlo results and

• For VH associated production, we can determine Higgs mass through the resonance peak of $M(J_1, J_2)$ for parameter set 400I, 500I, 500II and 800II.

→ Finally We constructed four observables to measure the anomalous coupling constants and proposed a new high energy criterion for new physics models.

Thanks for your attention!

Checking the unitary The plot for center of mass energy distribution

Weak boson scattering:

The center of mass energy for the two weak bosons

VH production:

The energy for events in which H decays to a fat jet and two leptons.

VH production:

The energy for events in which H decays to two fat jets.

