

Probing p p→WWW production and anomalous quartic gauge couplings at CERN LHC and future collider

### <sup>1</sup>**Yiwen Wen**,<sup>1</sup>Daneng Yang, <sup>1</sup>Huilin Qu, <sup>2</sup>Qishu Yan, <sup>1</sup>Qiang Li and <sup>1</sup>Yajun Mao

<sup>1</sup>Peking University,<sup>2</sup>University of Chinese Academy of Sciences

May 16, 2014

the 9th workshop of TeV physics in SYSU, Guangzhou



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへ⊙

#### ElectroWeak at LHC

- Physics goals
- Simulation framework

### 2 WWW with pure leptonic decays

- Signal and backgrounds
- Event selection
- Signal discovering significances
- 3 aQGCs
  - EFT Operators
  - Selections
  - Results
- WWW with semileptonic decays
  - same sign dilepton + 2 jets

## 5 Summary

Summary

Cs WWW with semileptonic decays

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Summary

# ElectroWeak Physics at the LHC

#### Physics goals

- **1** Precise measurement of electroweak(EW) parameters.
- Gauge-boson self-interactions. (anomalous quartic couplings in this talk)
- Spontaneouly symmetry breaking mechanism

In this work, we present the Monte-Carlo feasibility study of measuring *WWW* production, with pure leptonic decays and semileptonic decays, and then related *WWW* anomalous couplings.



## CMS results for gauge boson production cross sections



| Sim     | ulation fram              | nework                        |                |                                   |              |
|---------|---------------------------|-------------------------------|----------------|-----------------------------------|--------------|
| Outline | ElectroWeak at LHC<br>○○● | WWW with pure leptonic decays | aQGCs<br>00000 | WWW with semileptonic decays<br>O | Summary<br>O |



◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

| Outline | ElectroWeak at LHC | WWW with pure leptonic decays | aQGCs | WWW with semileptonic decays | Summary |
|---------|--------------------|-------------------------------|-------|------------------------------|---------|
|         | 000                | ●○○○○○                        | 00000 | O                            | O       |
| Sign    | al and back        | grounds                       |       |                              |         |



(a) With TGC (b) With (anomalous) (c) QED Radiations QGC from WW

- $\star$  3 leptons and MET final state.
- \* main backgrounds are:
  WZ, ttW, ZZ, ttZ, WWZ.

| Outline | ElectroWeak at LHC | <i>WWW</i> with pure leptonic decays | aQGCs | WWW with semileptonic decays | Summary |
|---------|--------------------|--------------------------------------|-------|------------------------------|---------|
|         | 000                | ●●○○○○                               | 00000 | O                            | O       |
| Ever    | nt selection       |                                      |       |                              |         |

Cut-based method:

- Exactly 3 leptons,  $P_T > 15 \text{GeV}, \eta < 2.4$
- MET>50GeV (25 in 14TeV LHC)
- 3 Veto b-jet  $P_t > 50 \text{ GeV}$
- 9 2 schemes of leptons selection, more about this later
- $M_{II} > 12 {\rm GeV}$
- Transverse Mass MT>200GeV
- $\bigcirc R_{lj}, R_{ll} > 0.5$
- 3 leading lepton  $P_T > 35 \text{GeV}$

Note that:

$$MT = \sqrt{(\sqrt{Pt_{III}^2 + m_{III}^2} + \sqrt{MET^2 + m_{III}^2})^2 - (\overrightarrow{Pt_{III}} + \overrightarrow{MET})^2}$$

| Outline | ElectroWeak at LHC<br>000 | <i>WWW</i> with pure leptonic decays | aQGCs<br>00000 | WWW with semileptonic decays<br>O | Summary<br>O |
|---------|---------------------------|--------------------------------------|----------------|-----------------------------------|--------------|
| Sche    | eme 1                     |                                      |                |                                   |              |

Using 2 different analysis scripts, only cut 4 is different.

#### Scheme 1

In order to suppress backgrounds which contains Z boson. Requiring mass difference between the invariant mass of the same flavor opposite sign lepton pairs and mass of Z is larger than 15 GeV.

Namely,  $|MII_{SFOS} - M_z| > 15 GeV$ 

| Outline | ElectroWeak at LHC<br>000 | <i>WWW</i> with pure leptonic decays | aQGCs<br>00000 | WWW with semileptonic decays<br>O | Summary<br>O |
|---------|---------------------------|--------------------------------------|----------------|-----------------------------------|--------------|
| Sche    | me ?                      |                                      |                |                                   |              |

#### Scheme 2

Class 2 types of lepton combination Type 1: 3 electrons, 3 muons, mu+ mu- e, e+ e- mu Type 2: mu+(-) mu+(-) e, e+(-) e+(-) mu

veto the Type 1 event since only the *WWW* process contains Type 2 event topology.

| Outline | ElectroWeak | LH |
|---------|-------------|----|
|         |             |    |

*WWW* with pure leptonic decays 000000

aQGCs WN 00000 0

WWW with semileptonic decays

Summary

# 14 TeV LHC(simulated with CMS )

|         |        |      | Events |       |           |       |       |          |
|---------|--------|------|--------|-------|-----------|-------|-------|----------|
|         | VC[fb] |      |        | cut-b | cut-based |       |       | BDT      |
|         | V2[ID] | Pile | up O   | Pileu | p 50      | Pileu | p 140 | Pileup 0 |
|         |        | s1   | s2     | s1    | s2        | s1    | s2    | s1       |
| WWW     | 2.1    | 20.9 | 6.2    | 19    | 5.8       | 17    | 5.1   | 20       |
| WZ      | 411    | 421  | 6.8    | 428   | 6.7       | 397   | 6.5   | 337      |
| tŦW     | 9.8    | 33   | 10.3   | 38    | 11        | 38    | 11    | 56       |
| ZZ      | 272    | 40   | 1.0    | 98    | 1.6       | 106   | 2.7   | 32       |
| tτΖ     | 6.3    | 10   | 2.7    | 12    | 3.4       | 13    | 3.6   | 18       |
| WWZ     | 0.8    | 3.7  | 1.0    | 3.0   | 1.0       | 3.5   | 0.94  | 3.2      |
| signifi | cance  | 0.92 | 1.2    | 0.82  | 1.1       | 0.75  | 0.98  | 0.94     |

Table: Cut flow at the LHC with  $\sqrt{s} = 14$  TeV and integrated luminosity of 100 fb<sup>-1</sup>.

ctroWeak at LHC WWWwith pure leptonic decays aQGC 0 00000● 00000

Outline

WWW with semileptonic decays

# 100 TeV future collider (simulated with "Snowmass" detector)results

|              |         | Events |           |       |       |  |  |  |
|--------------|---------|--------|-----------|-------|-------|--|--|--|
|              | X S[fb] |        | cut-based |       |       |  |  |  |
|              | Valini  | Pileu  | p 50      | Pileu | o 140 |  |  |  |
|              |         | s1     | s2        | s1    | s2    |  |  |  |
| WWW          | 15.61   | 4758   | 1416      | 3855  | 1156  |  |  |  |
| WZ           | 2570    | 92185  | 1670      | 82060 | 1696  |  |  |  |
| tŦW          | 89.66   | 8607   | 2539      | 9930  | 3211  |  |  |  |
| ZZ           | 2674    | 26633  | 481       | 24226 | 1283  |  |  |  |
| tτΖ          | 453.6   | 15240  | 4408      | 18180 | 5034  |  |  |  |
| WWZ          | 14.13   | 1164   | 317       | 993   | 255   |  |  |  |
| significance |         | 12.54  | 14.59     | 10.47 | 10.79 |  |  |  |

Table: Cut flow at future p p collider with  $\sqrt{s} = 100$  TeV and integrated luminosity of 3000 fb<sup>-1</sup>.



- Construct the effective Lagrangian of aQGC in a model independent way
- \* Still assuming the new physics keeps  $SU(2)_L \otimes U(1)_Y$
- \* The Lagrangian can be expressed in non-linear or linear representation
- $\star\,$  Since a Higgs was discovered, the linear one is more preferable.
- The lowest order of genuine linear representation EFT operator is dimension 8.
- $\star$  The Lagrangian we are interested

$$\mathcal{L} = \mathcal{L}_{SM} + rac{f_j}{\Lambda^4}\mathcal{O}_j$$



Operators affect the WWWW vertice:

$$\begin{split} \mathcal{L}_{S,0} &= \frac{f_{S0}}{\Lambda^4} [(D_\mu \Phi)^{\dagger} D_\nu \Phi] \times [(D^\mu \Phi)^{\dagger} D^\nu \Phi] \\ \mathcal{L}_{S,1} &= \frac{f_{S1}}{\Lambda^4} [(D_\mu \Phi)^{\dagger} D^\mu \Phi] \times [(D_\nu \Phi)^{\dagger} D^\nu \Phi] \\ \mathcal{L}_{T,0} &= \frac{f_{T0}}{\Lambda^4} \mathrm{Tr}[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu}] \times \mathrm{Tr}[\hat{W}_{\alpha\beta} \hat{W}^{\alpha\beta}] \end{split}$$

Where  $\Phi$  is the Higgs doublet,  $D_{\mu}\Phi = (\partial_{\mu} - igW_{\mu}^{j}\frac{\sigma^{j}}{2} - ig'B_{\mu}\frac{1}{2})\Phi$ and  $\hat{W}_{\mu\nu} \equiv \sum_{j} W_{\mu\nu}^{j}\frac{\sigma^{j}}{2}$ . And  $W_{\mu\nu}^{i}$  is the  $SU(2)_{L}$  field strength and  $B_{\mu\nu}$  is the  $U(1)_{Y}$  one.

arXiv:hep-ph/0606118





The aQGCs lead to excesses on hard tails. Modify selection cuts to separate the aQGC

- (1) met > 350GeV.
- (2)  $M_T > 1000$  GeV.
- (3) leading lepton  $P_T > 200$  GeV.

| Outline | ElectroWeak at LHC<br>000 | WWW with pure leptonic decays | aQGCs<br>○○○●○ | WWW with semileptonic decays<br>O | Summary<br>O |
|---------|---------------------------|-------------------------------|----------------|-----------------------------------|--------------|
| Resi    | ilte                      |                               |                |                                   |              |

 $\star\,$  The constraints on aQGC couplings are at 95%CL in 14 TeV LHC with 100 fb^{-1}

Scheme 1:

$$\begin{array}{l} -1.78 \times 10^{-10} {\rm GeV^{-4}} < f_{S0}/\Lambda^4 < 1.79 \times 10^{-10} {\rm GeV^{-4}}, \qquad (1) \\ -2.66 \times 10^{-10} {\rm GeV^{-4}} < f_{S1}/\Lambda^4 < 2.78 \times 10^{-10} {\rm GeV^{-4}}, \qquad (2) \\ -5.80 \times 10^{-13} {\rm GeV^{-4}} < f_{T0}/\Lambda^4 < 5.87 \times 10^{-13} {\rm GeV^{-4}}, \qquad (3) \end{array}$$

Scheme 2:

$$-1.9 \times 10^{-10} \text{GeV}^{-4} < f_{50}/\Lambda^4 < 1.75 \times 10^{-10} \text{GeV}^{-4}, \qquad (4)$$
  
$$-2.64 \times 10^{-10} \text{GeV}^{-4} < f_{51}/\Lambda^4 < 2.90 \times 10^{-10} \text{GeV}^{-4}, \qquad (5)$$
  
$$-6.02 \times 10^{-13} \text{GeV}^{-4} < f_{T0}/\Lambda^4 < 6.06 \times 10^{-13} \text{GeV}^{-4}, \qquad (6)$$

| Outline | ElectroWeak at LHC<br>000 | WWW with pure leptonic decays | aQGCs<br>○○○○● | WWW with semileptonic decays<br>O | Summary<br>O |
|---------|---------------------------|-------------------------------|----------------|-----------------------------------|--------------|
| Com     | parison                   |                               |                |                                   |              |

|                                                 | WWW                         | <sup>†</sup> VBF WW       | <sup>‡</sup> Snowmass   |
|-------------------------------------------------|-----------------------------|---------------------------|-------------------------|
|                                                 | 95% CL 100 fb <sup>-1</sup> | 99%CL 100fb <sup>-1</sup> | $5\sigma$ 300fb $^{-1}$ |
| $\frac{f_{S0}}{\Lambda^4}$ [GeV <sup>-4</sup> ] | $1.8	imes10^{-10}$          | $2.4	imes10^{-11}$        | -                       |
| $\frac{f_{S1}}{\Lambda^4}$ [GeV <sup>-4</sup> ] | $2.7	imes10^{-10}$          | $2.5	imes10^{-11}$        | -                       |
| $\frac{f_{T0}}{\Lambda^4}$ [GeV <sup>-4</sup> ] | $\$~5.8	imes10^{-13}$       | -                         | $1.2 	imes 10^{-12}$    |

ヘロト 人間 とくほと くほど

æ

Table: Constraints on aQGC parameter upper limit comparison to previous MC study.

 $\S$  8  $\times$  10  $^{-13}$  in 5  $\sigma$  with 100 fb  $^{-1}$ 

<sup>†</sup> arXiv:hep-ph/0606118 by Eboli et al.

<sup>‡</sup> arXiv:1309.1475 by Snowmass

| Outline | ElectroWeak at LHC | WWW with pure leptonic decays | aQGCs | WWW with semileptonic decays | Summary |
|---------|--------------------|-------------------------------|-------|------------------------------|---------|
|         |                    |                               |       | •                            |         |
|         |                    |                               |       |                              |         |

## same sign dilepton + 2 jets

|                       | 14TeV, 100fb <sup>-1</sup> |     |     | 100TeV, 100fb <sup>-1</sup> |     |     |
|-----------------------|----------------------------|-----|-----|-----------------------------|-----|-----|
| Pileup                | ο                          | 50  | 140 | о                           | 50  | 140 |
| cut-based             | 1.7                        | 1.2 | 0.9 | 3.8                         | 2.0 | 1.2 |
| BDT                   | 1.8                        | 1.4 | 1.3 | 4.4                         | 3.0 | 2.6 |
| Table 3. Significance |                            |     |     |                             |     |     |

|                         | 14TeV   |       |          |       | 100TeV   |       |
|-------------------------|---------|-------|----------|-------|----------|-------|
|                         | 100fb-1 |       | 3000fb-1 |       | 3000fb-1 |       |
|                         | Lower   | Upper | Lower    | Upper | Lower    | Upper |
| FSo                     | -430.7  | 445.6 | -201.2   | 211.3 | -110.8   | 73.4  |
| FS1                     | -951.5  | 971.2 | -415.5   | 460.4 | -168.0   | 239.3 |
| FTo                     | -2.80   | 2.71  | -1.30    | 1.19  | -0.20    | 0.22  |
| Unit: TeV <sup>-4</sup> |         |       |          |       |          |       |

| Outline | ElectroWeak at LHC<br>000 | WWW with pure leptonic decays | aQGCs<br>00000 | WWW with semileptonic decays<br>0 | Summary<br>• |  |
|---------|---------------------------|-------------------------------|----------------|-----------------------------------|--------------|--|
| Summary |                           |                               |                |                                   |              |  |

- \* Our study show that it reaches 1.2  $\sigma$  to observe *WWW* production with pure leptonic decay channel at 14 TeV LHC with 100 fb<sup>-1</sup> and 10  $\sigma$  at 100TeV next generation proton-proton collider with 3000fb<sup>-1</sup>.
- \* A significance of 1.4  $\sigma$  to observe *WWW* production with semi-leptonic decay channel at 14 TeV LHC with 100 fb<sup>-1</sup> and 4  $\sigma$  at 100TeV next generation proton-proton collider with 100fb<sup>-1</sup>.
- $\star\,$  We gave a better results on WWWW aQGC than Snowmass but less stringent than VBF