		Collider Phenomenology	

Phenomenology in minimal cascade seesaw for neutrino mass

刘继元

天津理工大学

Based on RD, ZLH, YL, HJL, JYL, arXiv:1403.2040

Tianjin Univ. of Tech.

Talk at 2014 TeV Workshop, Guangzhou, May 16 2014

		Collider Phenomenology	
Outline			

1 Introduction

- 2 The Model
- 3 LFV Transitions
- 4 Collider Phenomenology

5 Conclusions

Tianjin Univ. of Tech.

< □ > < **□** >

- < ⊒ → <

Ji-Yuan Liu

Introduction		Collider Phenomenology	
Outline			

1 Introduction

- 2 The Model
- 3 LFV Transitions
- 4 Collider Phenomenology
- 5 Conclusions

▲口▶▲圖▶▲臣▶▲臣▶ 臣 のへで

Ji-Yuan Liu

A B > A B >

Neutrino mass — Beyond SM

- There is no neutrino mass in SM.
 No right-handed neutrinos exist in SM.
- Experimental fact from neutrino oscillation:
 - Solar Neutrino Experiment: SNO, Homestake, SAGE, GNO, Kamiokande and Super-K, Borexino, ...
 - Atmospheric Neutrino Experiment: *Kamiokande-II, Super-K, Soudan-2, MACRO,* ····
 - Accelerator and reactor neutrino experiment: LSND, K2K, MINOS, OPERA, T2K, NOvA, KARMEN, MiniBooNE, Chooz, KamLAND, DayaBay, RENO, Double-Chooz, ···

Neutrino mass — Beyond SM

- There is no neutrino mass in SM.
 No right-handed neutrinos exist in SM.
- Experimental fact from neutrino oscillation:
 - Solar Neutrino Experiment: SNO, Homestake, SAGE, GNO, Kamiokande and Super-K, Borexino,
 - Atmospheric Neutrino Experiment: Kamiokande-II, Super-K, Soudan-2, MACRO, ····
 - Accelerator and reactor neutrino experiment: LSND, K2K, MINOS, OPERA, T2K, NOvA, KARMEN, MiniBooNE, Chooz, KamLAND, DayaBay, RENO, Double-Chooz, ···

Introduction		Collider Phenomenology	

Neutrino oscillation

PMNS parameterization

$$\begin{split} |v_{\alpha}\rangle &=& \sum_{i} V_{\alpha i}^{*} |v_{i}\rangle, \quad V = \textit{U}_{\textit{PMNS}} \cdot \textit{Diag}\{e^{i\rho}, \; e^{i\sigma}, \; 1\}, \\ \textit{U}_{\textit{PMNS}} &=& \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13} \\ -c_{12}s_{23}s_{13} - s_{12}c_{23}e^{-i\delta} & -s_{12}s_{23}s_{13} + c_{12}c_{23}e^{-i\delta} & s_{23}c_{13} \\ -c_{12}c_{23}s_{13} + s_{12}s_{23}e^{-i\delta} & -s_{12}c_{23}s_{13} - c_{12}s_{23}e^{-i\delta} & c_{23}c_{13} \end{pmatrix}, \end{split}$$

where $s_{ij} = \sin \theta_{ij}$, $c_{ij} = \cos \theta_{ij}$, (ij = 12, 23, 13)

Neutrino mass hierarchy patterns

- Normal Hierachy (NH): *m*₁ < *m*₂ < *m*₃
- Inverted Hierachy (IH): $m_3 < m_1 < m_2$

Talk at 2014 TeV Workshop, Guangzhou, May 16 2014

< ∃ > <

Introduction		Collider Phenomenology	

Oscillation data

■ Global 3v oscillation analysis (for NH) Fogli et al., 2012

Parameter	Best fit	1σ range	2σ range	3σ range
$\delta m^2/10^{-5}~{ m eV}^2$	7.54	[7.32,7.80]	[7.15,8.00]	[6.99,8.18]
$\Delta m^2/10^{-3}~{ m eV}^2$	2.43	[2.33, 2.49]	[2.27,2.55]	[2.19,2.62]
θ_{12}	33.6°	[32.6°,34.8°]	[31.6°,35.8°]	[30.6°,36.8°]
θ_{23}	38.4°	[37.2°,40.0°]	[36.2°,42.0°]	[35.1°,53.0°]
θ_{13}	8.9°	[8.5°,9.4°]	[8.0°,9.8°]	[7.5°,10.2°]

where $\delta m^2 \equiv m_2^2 - m_1^2$ and $\Delta m^2 \equiv m_3^2 - (m_1^2 + m_2^2)/2$.

▲□▶ ▲圖▶ ▲厘▶ ▲厘

Ji-Yuan Liu

Three conventional seesaw models

■ The unique, dimension-5 operator is

$$\mathscr{O}_{5} = \frac{f_{\alpha\beta}}{\Lambda} \left(\overline{F_{L\alpha}^{C}} \varepsilon H \right) \left(H^{T} \varepsilon F_{L\beta} \right), \quad \text{Weinberg, 1979}$$

where $\alpha, \beta = e, \mu, \tau$ and $\varepsilon = i\sigma^2$

Only three realizations at tree level, Ma, 1998

Image: Image:

Beyond conventional seesaws

- Conventional seesaws suffer "seesaw problem": large mass of new particles → tiny couplings
- Two basic ways to resolve the problem:
 - Heavy particles carry new quantum numbers or discrete symmetries
 leading mass operators are induced only at the loop level;
 - Heavy particles live in a higher irre. rep. of the SM gauge group
 - seesaw operates through several steps.

Beyond conventional seesaws

- Conventional seesaws suffer "seesaw problem": large mass of new particles → tiny couplings
- Two basic ways to resolve the problem:
 - Heavy particles carry new quantum numbers or discrete symmetries
 leading mass operators are induced only at the loop level;
 - Heavy particles live in a higher irre. rep. of the SM gauge group — seesaw operates through several steps.

Higher dimension seesaw operators

Dim-7 seesaw

$$\begin{split} \Phi \sim (1,4,3), \ \Sigma \sim (1,3,2), \\ \overline{\Sigma} \sim (1,3,-2) \end{split}$$

Babu, et. al., PRD80, 2009

Dim-9 seesaw

 $\Phi\sim(1,4,-1),\;\Sigma_R\sim(1,5,0)$

Kumericki, et. al., PRD86, 2012

Ji-Yuan Liu

Talk at 2014 TeV Workshop, Guangzhou, May 16 2014

Tianjin Univ. of Tech. _____ Page 11

Introduction		Collider Phenomenology	

Cascade seesaw operator

Dim-(5+4n) operator by a more systematic and economical way. Liao, JHEP1106, 2011

Introducing a heavy fermion multiplet $\Sigma \sim (1, 2n + 3, 0)$, neutrino mass is generated by Yukawa coupling $\overline{F_{L}^{C}} \Phi^{(n+\frac{1}{2})} \Sigma$.

Talk at 2014 TeV Workshop, Guangzhou, May 16 2014

э

・ロト ・ 同ト ・ ヨト ・ ヨト

	The Model	Collider Phenomenology	
Outline			

1 Introduction

2 The Model

3 LFV Transitions

4 Collider Phenomenology

5 Conclusions

Tianjin Univ. of Tech.

イロト イポト イヨト イヨ

Ji-Yuan Liu

Minimal cascade seesaw (n = 1)

New fields: one scalar $\Phi \sim (1,4,1)$ and one fermion $\Sigma \sim (1,5,0)$:

$$\Phi = (\Phi_{+2}, \Phi_{+1}, \Phi_0, \Phi_{-1}), \ \Sigma = (\Sigma_{+2}, \Sigma_{+1}, \Sigma_0, \Sigma_{-1}, \Sigma_{-2})$$

SM fields: $\phi = (\phi_+, \phi_0), F_L = (v_L, \ell_L), f_R$

イロト イヨト イヨト イ

	The Model	Collider Phenomenology	
Scalars			

Scalar potential:

$$\begin{split} V &= -\mu_{\phi}^{2} \phi^{\dagger} \phi + \lambda_{\phi} (\phi^{\dagger} \phi)^{2} + \mu_{\Phi}^{2} \Phi^{\dagger} \Phi \\ &- \lambda_{1} (\Phi \tilde{\Phi})_{0} (\phi \tilde{\phi})_{0} - \lambda_{2} ((\Phi \tilde{\Phi})_{1} (\phi \tilde{\phi})_{1})_{0} + \lambda_{3} ((\Phi \Phi)_{1} (\tilde{\Phi} \tilde{\Phi})_{1})_{0} + \lambda_{4} ((\Phi \Phi)_{3} (\tilde{\Phi} \tilde{\Phi})_{3})_{0} \\ &- [\kappa_{1} (\Phi \tilde{\phi} \phi \tilde{\phi})_{0} + \text{h.c.}] - [\kappa_{2} ((\Phi \Phi)_{1} (\tilde{\phi} \tilde{\phi})_{1})_{0} + \text{h.c.}] - [\kappa_{3} ((\Phi \Phi)_{1} (\tilde{\Phi} \tilde{\phi})_{1})_{0} + \text{h.c.}], \end{split}$$

where
$$\tilde{\Phi} = (\Phi_{-1}^*, -\Phi_0^*, \Phi_{+1}^*, -\Phi_{+2}^*)$$
 and $\tilde{\phi} = (\phi_0^*, -\phi_+^*)$

• With the assumptions $\kappa_2 \approx \kappa^2$, $\kappa_1 \approx \kappa_3 \approx \kappa \ll 1$, the minimal of V gives

$$v_{\phi} pprox \sqrt{rac{\mu_{\phi}^2}{2\lambda_{\phi}}}, \ v_{\Phi} pprox rac{\kappa v_{\phi}}{2\sqrt{3}r_{\Phi}}, \quad ext{where} \ r_{\Phi} = rac{\mu_{\Phi}^2}{v_{\phi}^2} + rac{\lambda_1}{2\sqrt{2}} + rac{\lambda_2}{2\sqrt{30}}$$

The mixings between same-charged members of φ and Φ are O(κ), and the masses of the W and Z bosons are modified by O(κ²) terms

$$m_W \approx \frac{g_2 v_{\phi}}{\sqrt{2}} \left(1 + \frac{7}{24r_{\Phi}^2} \kappa^2 \right), \ m_Z \approx \frac{g_2 v_{\phi}}{\sqrt{2}c_W} \left(1 + \frac{1}{24r_{\Phi}^2} \kappa^2 \right),$$

	The Model	Collider Phenomenology	
Fermior	ns		

■ By redefining ∑ fields,

$$\begin{split} \Sigma_{1L}^{0} &= \frac{1}{\sqrt{2}} \big(\Sigma_{0L} + \Sigma_{0R}^{C} \big), \ \Sigma_{2L}^{0} &= \frac{i}{\sqrt{2}} \big(\Sigma_{0L} - \Sigma_{0R}^{C} \big), \\ \Sigma_{1}^{-} &= \frac{1}{\sqrt{2}} \big(\Sigma_{-1} - \Sigma_{+1}^{C} \big), \ \Sigma_{2}^{-} &= \frac{i}{\sqrt{2}} \big(\Sigma_{-1} + \Sigma_{+1}^{C} \big), \\ \Sigma_{1}^{--} &= \frac{1}{\sqrt{2}} \big(\Sigma_{-2} + \Sigma_{+2}^{C} \big), \ \Sigma_{2}^{--} &= \frac{i}{\sqrt{2}} \big(\Sigma_{-2} - \Sigma_{+2}^{C} \big), \end{split}$$

the Yukawa couplings are written as

$$-\mathscr{L}_{\Phi}^{\text{Yuk}} = \sum_{m=-2}^{+2} \mathsf{Y}_{ix}^{m} \left[\sqrt{2+m} \Phi_m \overline{\Sigma_x^m} P_L v_i + \sqrt{2-m} \Phi_{m+1} \overline{\Sigma_x^m} P_L \ell_i \right] + \text{h.c.} ,$$

where the 3×2 coupling matrices Y^m can be written as,

$$Y^{-2} = Y^{-1} = Y^0 = -Y^{+1} = Y^{+2} = \frac{\sqrt{M_{\Sigma}}}{\sqrt{2}v_{\Phi}}Z^*.$$

Tianjin Univ. of Tech.

< □ > < **□** >

Talk at 2014 TeV Workshop, Guangzhou, May 16 2014

The Model	Collider Phenomenology	

Parameterization

 $Z = (\mathbf{z}_1, \mathbf{z}_2)$ can be patameterized as v masses and $U_{PMNS} = (\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$,

$$\begin{array}{ll} \mathsf{NH:} & m_{v_1} = 0, \ m_{v_2} = \lambda_-, \ m_{v_3} = \lambda_+, \\ & \mathbf{z}_1 = c_- \mathbf{x}_2 + c_+ \mathbf{x}_3, \ \mathbf{z}_2 = d_- \mathbf{x}_2 + d_+ \mathbf{x}_3, \\ \mathsf{IH:} & m_{v_3} = 0, \ m_{v_1} = \lambda_-, \ m_{v_2} = \lambda_+, \\ & \mathbf{z}_1 = c_- \mathbf{x}_1 + c_+ \mathbf{x}_2, \ \mathbf{z}_2 = d_- \mathbf{x}_1 + d_+ \mathbf{x}_2, \end{array}$$

where c_{\pm} , d_{\pm} can be expressed of λ_{\pm} plus a free complex parameter *t*,

$$\begin{split} c_{-} &= i\sqrt{\lambda_{-}}\frac{2t}{1+t^{2}}, \qquad d_{-} &= i\sqrt{\lambda_{-}}\frac{1-t^{2}}{1+t^{2}}, \\ c_{+} &= i\sqrt{\lambda_{+}}\frac{1-t^{2}}{1+t^{2}}, \qquad d_{+} &= -i\sqrt{\lambda_{+}}\frac{2t}{1+t^{2}}. \end{split}$$

Details of the model can be found in our paper.

(日)

Talk at 2014 TeV Workshop, Guangzhou, May 16 2014

	LFV Transitions	Collider Phenomenology	
Outline			

1 Introduction

- 2 The Model
- 3 LFV Transitions
- 4 Collider Phenomenology

5 Conclusions

Tianjin Univ. of Tech.

(日) (四) (日) (日) (日)

Talk at 2014 TeV Workshop, Guangzhou, May 16 2014

	LFV Transitions	Collider Phenomenology	

Radiative transitions

Diagrams for radiative transitions:

The branching ratio for $\ell_i \rightarrow \ell_i \gamma$ transition is

$$\mathrm{BR}(\ell_j \to \ell_i \gamma) = \mathrm{BR}(\ell_j \to \ell_i \bar{\nu}_i \nu_j) \times \frac{3\alpha \left| (ZZ^{\dagger})_{ij} \right|^2}{64\pi G_F^2 \nu_{\Phi}^4 M_{\Sigma}^2} \left[\sum_{m=-2}^1 F_m(r) \right]^2,$$

and the anomalous magnetic moment of ℓ_i is

$$a(\ell_i) = \frac{m_i^2 (ZZ^{\dagger})_{ii}}{(4\pi)^2 v_{\phi}^2 M_{\Sigma}} \sum_{m=-2}^1 F_m(r).$$

where $F_m(r)$ are loop functions with $r = M_{\Sigma}^2/M_{\Phi}^2$.

Talk at 2014 TeV Workshop, Guangzhou, May 16 2014

	LFV Transitions	Collider Phenomenology	

Purely leptonic decays

Additional box diagram:

The branching ratio for $\ell_I \rightarrow \ell_i \ell_i \bar{\ell}_i$ transition is

$$BR(\ell_{I} \to \ell_{i}\ell_{i}\bar{\ell}_{i}) = BR(\ell_{I} \to \ell_{i}\nu_{i}\bar{\nu}_{i})\frac{1}{2^{13}\pi^{4}\nu_{\Phi}^{4}G_{F}^{2}} \left\{ 2\left|\sum_{m}(B^{m}+T_{1}^{m})\right|^{2} + \left|\sum_{m}T_{1}^{m}\right|^{2} -8Re\left(\sum_{m}B^{m}T_{2}^{m*}\right) - 12Re\left(\sum_{m}T_{1}^{m}T_{2}^{m*}\right) + \left[-\frac{8}{3} + 8\ln\frac{m_{I}^{2}}{4m_{I}^{2}}\right]\left|\sum_{m}T_{2}^{m}\right|^{2} \right\},$$

where

$$B^{m} = -\frac{1}{v_{\Phi}^{2}} (ZZ^{\dagger})_{ii} (ZZ^{\dagger})_{ii} H_{m}(r),$$

$$T_{1}^{m} = \frac{e^{2} (ZZ^{\dagger})_{ii}}{M_{\Sigma}} G_{m}(r), \quad T_{2}^{m} = \frac{e^{2} (ZZ^{\dagger})_{ii}}{M_{\Sigma}} F_{m}(r).$$

Tianjin Univ. of Tech.

		LFV Transitions	Collider Phenomenology	
u – e conversion in nuclei				

• The $\mu - e$ conversion branching ratio is given by

$$BR(\mu^{-}N \to e^{-}N) = \frac{2|A_{R}D + \tilde{g}_{LV}^{(p)}V^{(p)} + \tilde{g}_{LV}^{(n)}V^{(n)}|^{2}}{\omega_{capt}},$$

where

Ji-Yuan Liu

$$\begin{array}{lll} {\cal A}_{\cal R} & = & \frac{\sqrt{2}e(ZZ^{\dagger})_{e\mu}}{16(4\pi)^2 v_{\Phi}^2 M_{\Sigma}} \sum_m F_m(r), \\ \\ \tilde{g}_{LV}^{(p)} & = & 2g_{LV(u)} + g_{LV(d)} = \frac{\alpha(ZZ^{\dagger})_{e\mu}}{\sqrt{2}(4\pi) v_{\Phi}^2 M_{\Sigma}} \sum_m G_m(r), \\ \\ \tilde{g}_{LV}^{(n)} & = & g_{LV(u)} + 2g_{LV(d)} = 0, \end{array}$$

and overlap integrals D, $V^{(p)}$ and $V^{(n)}$ and ordinary muon capture rate ω_{capt} can be numerically evaluated.

< □ > < **□** >

→ Ξ → → Ξ

	LFV Transitions	Collider Phenomenology	

Constraints on LFV transitions

μ LFV decays

 $BR(\mu \to e\gamma) < 5.7 \times 10^{-13}$ @ 90% C.L. MEG, 2013

 $BR(\mu \rightarrow 3e) < 1.0 \times 10^{-12}$ @ 90% C.L. SINDRUM, 1988

• $\mu - e$ conversion in nuclei

 $BR(\mu^{-}Ti \rightarrow e^{-}Ti) < 4.3 \times 10^{-12}$ @ 90% C.L. SINDRUM II, 1993

 $BR(\mu^{-}Au \rightarrow e^{-}Au) < 7 \times 10^{-13}$ @ 90% C.L. SINDRUM II, 2006

Future plans: sensitivity will reach $10^{-16} \sim 10^{-18}$

COMET and PRISM/PRIME at KEK, Mu2e and project-X at Fermilab

イロト イポト イヨト イヨ

	LFV Transitions	Collider Phenomenology	

The bound on $BR(\mu \rightarrow e\gamma)$ sets the most stringent constraint.

For instance, at $M_{\Phi} = 200 \text{ GeV}$, $M_{\Sigma} = 300 \text{ GeV}$, $V_{\Phi} \gtrsim O(10^{-4}) \text{ GeV}$.

Talk at 2014 TeV Workshop, Guangzhou, May 16 2014

		Collider Phenomenology	
Outline			

1 Introduction

- 2 The Model
- 3 LFV Transitions
- 4 Collider Phenomenology

5 Conclusions

Tianjin Univ. of Tech.

イロト イポト イヨト イヨ

Ji-Yuan Liu

		Collider Phenomenology	
Produc	tion		

- Tools used for simulation and analysis: FeynRules1.7, Madgraph5, Pythia6, PGS, MadAnalysis5, CTEQ6L1...
- Dominant production of new particles at the LHC: Drell-Yan process:

$$\begin{array}{ll} \mbox{pp} & \rightarrow & \gamma^*/Z^* \rightarrow \Phi_{+2}^* \Phi_{+2}/\Phi_{+1}^* \Phi_{+1}/\Phi_{-1}^* \Phi_{-1}/A_0 H_0, \\ \\ & \rightarrow & \gamma^*/Z^* \rightarrow \Sigma^{++} \Sigma^{--}/\Sigma^+ \Sigma^-, \end{array}$$

or associated production:

$$\begin{array}{lll} \mbox{pp} & \rightarrow & \mbox{W^*} \rightarrow \Phi_{+1}^* \Phi_{+2}/A_0 \Phi_{+1}/A_0 \Phi_{-1}^*/H_0 \Phi_{+1}/H_0 \Phi_{-1}^*, $$$ \\ & \rightarrow & \mbox{W^*} \rightarrow \Sigma^{++} \Sigma^{-}/\Sigma^+ \Sigma^0, $ \end{array}$$

At 14TeV LHC, $\sigma[\Phi(\Sigma)] \ge 0.01 fb$ (1fb) up to a heavy mass of O(1)TeV.

< □ > < 同 > < 回 > < 国

Introduction	The Model	LFV Transitions	Collider Phenomenology	Conclusions
Decay p	property			

Like-sign dilepton decay $\Phi_{+2} \rightarrow \ell_i^+ \ell_i^+$ is suppressed, since

$$\frac{\Gamma(\Phi_{+2} \to \ell_i^+ \ell_j^+)}{\Gamma(\Phi_{+2} \to W^+ W^+)} \sim \left(\frac{m_v}{M_{\Phi}}\right)^2 \left(\frac{v_{\phi}}{v_{\Phi}}\right)^4.$$

Ji-Yuan Liu

Tianjin Univ. of Tech.

BRs of ϕ in the parentheses at $M_{\phi} = 300 \text{ GeV}$ and $v_{\phi} = 10^{-2} \text{ GeV}$.

	$\Phi^*_{+1} \rightarrow b \overline{t} (0.32)$	$\Phi^*_{+1} \rightarrow h W^- \; (0.68)$	$\Phi^*_{-1} \rightarrow hW^+ \ (0.36)$	$\Phi_{-1}^* \rightarrow ZW^+ \; (0.47)$
$\Phi_{+1} \rightarrow t \overline{b} (0.32)$	$b\overline{b}t\overline{t}(0.10)$	$t\overline{b}hW^{-}(0.22)$	-	_
$\Phi_{+1} \rightarrow hW^+ \; (0.68)$	$b\overline{t}hW^{+}(0.22)$	hhW^+W^- (0.47)	-	_
$\Phi_{-1} \rightarrow h W^- \; (0.36)$	-	-	hhW^+W^- (0.13)	$hZW^{+}W^{-}(0.17)$
$\Phi_{-1} \rightarrow ZW^{-} (0.47)$	-	-	hZW^+W^- (0.17)	hhW^+W^- (0.22)
$A_0 \rightarrow hZ \ (1.0)$	-	-	$hhZW^{+}(0.36)$	$hZZW^{+}(0.47)$
$H_0 \rightarrow W^+ W^- \ (0.35)$	-	-	$hW^-W^+W^+$ (0.13)	$ZW^{-}W^{+}W^{+}$ (0.17)
$H_0 \rightarrow hh~(0.60)$	-	-	$hhhW^{+}(0.22)$	$hhZW^{+}$ (0.28)
$\Phi_{+2} \to W^+ W^+ \ (1.0)$	$b\overline{t}W^+W^+$ (0.32)	$hW^-W^+W^+$ (0.68)	-	-
	$A_0 \rightarrow hZ (1.0)$	$H_0 \to W^+ W^- \ (0.35)$	$H_0 \rightarrow hh~(0.60)$	$\Phi_{+2}^* \to W^- W^- (1.0)$
$\Phi_{+1} \to t \overline{b} \ (0.32)$	$t\overline{b}hZ(0.32)$	$t\overline{b}W^+W^-$ (0.10)	$t\overline{b}hh$ (0.20)	_
$\Phi_{+1} \rightarrow hW^+ \; (0.68)$	$hhZW^+$ (0.68)	$hW^-W^+W^+$ (0.24)	$hhhW^+$ (0.40)	-
$A_0 \rightarrow hZ \ (1.0)$	-	$hZW^{+}W^{-}(0.35)$	hhhZ (0.60)	-
$H_0 \rightarrow W^+ W^- \ (0.35)$	hZW^+W^- (0.35)	-	-	-
$H_0 \rightarrow hh~(0.60)$	hhhZ~(0.60)	-	-	-
$\Phi_{+2} \rightarrow W^+ W^+ \ (1.0)$	_	_	-	$W^+W^+W^-W^-$ (1.0)

Ji-Yuan Liu

Tianjin Univ. of Tech.

	Collider Phenomenology	

BRs of Σ in the parentheses at $M_{\Sigma} = 300 \text{ GeV}$ and $v_{\Phi} = 10^{-2} \text{ GeV}$.

	$\Sigma^+ \to W^+ \nu \; (0.5)$	$\Sigma^+ \to h \ell^+ \; (0.44)$	$\Sigma^+ \rightarrow Z \ell^+ \; (0.06)$	$\Sigma^{++} \to W^+ \ell^+ \ (1.0)$
$\Sigma^0 \to W^\pm \ell^\mp \; (0.5)$	$W^{\pm}W^{+}\ell^{\mp}v$ (0.25)	$W^{\pm}h\ell^{\mp}\ell^{+}~(0.22)$	$W^{\pm}Z\ell^{\mp}\ell^{+}$ (0.03)	_
$\Sigma^0 \rightarrow h \nu \; (0.44)$	W^+hvv (0.22)	$hh\ell^+ v (0.19)$	$Zh\ell^+\nu$ (0.026)	_
$\Sigma^0 \rightarrow Z \nu \; (0.06)$	$W^+Zvv(0.03)$	$Zh\ell^+v$ (0.026)	ZZvv (0.0036)	—
$\Sigma^{-} \rightarrow W^{-} \nu \; (0.5)$	W^+W^-vv (0.25)	$hW^-\ell^+\nu$ (0.22)	$W^- Z \ell^+ \nu (0.03)$	$W^+W^-\ell^+\nu$ (0.5)
$\Sigma^- \rightarrow h \ell^- \ (0.44)$	$W^+h\ell^-v~(0.22)$	$hh\ell^+\ell^-$ (0.19)	$Zh\ell^+\ell^-\;(0.026)$	$W^+ h \ell^+ \ell^- (0.44)$
$\Sigma^- \rightarrow Z \ell^- \; (0.06)$	$W^+Z\ell^-\nu~(0.03)$	$Zh\ell^+\ell^-~(0.026)$	$ZZ\ell^+\ell^-$ (0.0036)	$W^+ Z \ell^+ \ell^- (0.06)$
$\Sigma^{} \to W^- \ell^- \ (1.0)$	$W^+W^-\ell^-\nu$ (0.5)	$W^{-}h\ell^{+}\ell^{-}$ (0.44)	$W^{-}Z\ell^{+}\ell^{-}(0.06)$	$W^+W^-\ell^+\ell^-$ (1.0)

Introduction	The Model	LFV Transitions	Collider Phenomenology	Conclusions
Signal				

Signal channels considered and corresponding processes:

final states	Φ production process in <i>pp</i> collision
$2\ell^{\pm}2\ell^{\mp}$	$\Phi_{+2}\Phi_{+2}^*/A_0H_0 \rightarrow 2\ell^{\pm}2\ell^{\mp}$
$4j2\ell^{\pm} + E_T$	$\Phi_{+2}\Phi_{+2}^* \rightarrow W^{\pm}W^{\pm}W^{\mp}W^{\mp} \rightarrow jjjj\ell^{\pm}\ell^{\pm}\nu\nu,$
	$\Phi_{+2}\Phi_{+1}^*(\Phi_{+2}^*\Phi_{+1}) \to W^{\pm}W^{\pm} + hW^{\mp}/\bar{t}b(t\bar{b}) \to jjb\bar{b}\ell^{\pm}\ell^{\pm}\nu\nu$
$4j2\ell^{\pm}$	$\Phi_{+2} \Phi_{+2}^* ightarrow \ell^\pm \ell^\pm W^\mp W^\mp ightarrow jjjj\ell^\pm \ell^\pm$,
	$\Phi_{+2}\Phi_{+1}^*(\Phi_{+2}^*\Phi_{+1}) \rightarrow \ell^{\pm}\ell^{\pm} + hW^{\mp}/\bar{tb}(t\bar{b}) \rightarrow jjb\bar{b}\ell^{\pm}\ell^{\pm}$
final states	Σ production process in <i>pp</i> collision
$2\ell^{\pm}2\ell^{\mp}2j$	$\Sigma^{\pm}\Sigma^{\mp}/\Sigma^{0}\Sigma^{\pm}/\Sigma^{\pm}\Sigma^{\mp\mp} \to hZ(ZZ)\ell^{\pm}\ell^{\mp}/W^{\pm}\ell^{\mp}Z\ell^{\pm}/Z\ell^{\pm}W^{\mp}\ell^{\mp} \to jj2\ell^{\pm}2\ell^{\mp}$
$3\ell^{\pm}\ell^{\mp}2j$	$\Sigma^{\pm}\Sigma^{0} \to W^{\mp} \ell^{\pm} Z \ell^{\pm} \to j j 3 \ell^{\pm} \ell^{\mp}$
$3\ell^{\pm}2\ell^{\mp}+E_T$	$\Sigma^{\pm}\Sigma^{0}/\Sigma^{\pm\pm}\Sigma^{\mp} \to Z\ell^{\pm}W^{\pm}\ell^{\mp}(Z\ell^{\pm}Z\nu)/W^{\pm}\ell^{\pm}Z\ell^{\mp} \to 3\ell^{\pm}2\ell^{\mp}\nu$
$3\ell^{\pm}3\ell^{\mp}$	$\Sigma^{\pm}\Sigma^{\mp} \to \ell^{\pm}Z\ell^{\mp}Z \to 3\ell^{\pm}3\ell^{\mp}$

Ji-Yuan Liu

Tianjin Univ. of Tech.

			Collider Phenomenology	
No. of	events of $pp \rightarrow \Phi$	$h_{+2}\Phi_{+1} \rightarrow 4j2\ell^{\pm}$ for M	$M_{\Phi_{+2},\Phi_{+1}} = 300 \text{ GeV}$ at 14 T	eV LHC.

cuts	signal $4j2\ell^{\pm}$		bkg $t\overline{t}W^{\pm}$	$S/\sqrt{S+B}$	
	IH	NH		IH	NH
no cuts	406 (29.7)	81.6 (6)	1409 (124)	9.53 (2.39)	2.11 (0.52)
basic cuts	296.6 (22.5)	60.2 (4.7)	851.3 (81.9)	8.75 (2.2)	1.99 (0.5)
$E_T < 30 \text{ GeV},$					
$(p_T(\ell), p_T(j)) > (50, 100) \text{ GeV}$	212.4 (16.2)	42.7 (3.4)	36.1 (3.2)	13.47 (3.68)	4.81 (1.31)
$60 < M_{jj}/\text{GeV} < 150 \ (M_{W,h} \text{ reconst.}),$					
$280 < M_{ll}/{\rm GeV} < 320$	183.1 (13.9)	37.1 (2.9)	1.8 (0.1)	13.47 (3.72)	5.94 (1.67)
$250 < M_{jjjj}/{\rm GeV} < 350$	102.6 (7.7)	21.8 (1.7)	0.8 (0.04)	10.09 (2.76)	4.59 (1.27)

Ji-Yuan Liu

道 🕨 🚊 🛷 🔍

	Collider Phenomenology	

■ No. of events of $pp \rightarrow \Sigma^{\pm}\Sigma^{0} \rightarrow 3\ell^{\pm}2\ell^{\mp} + \not\!\!\!E_T$ for $M_{\Sigma} = 300 \text{ GeV}$ at 14 TeV LHC.

Tianjin Univ. of Tech.

Ji-Yuan Liu

		Collider Phenomenology	Conclusions
Outline			

1 Introduction

- 2 The Model
- 3 LFV Transitions
- 4 Collider Phenomenology

5 Conclusions

・ロト・西ト・ヨト・ヨト しゅう

Ji-Yuan Liu

Talk at 2014 TeV Workshop, Guangzhou, May 16 2014

Tianjin Univ. of Tech.

		Collider Phenomenology	Conclusions
Conclusion	าร		

- The minimal cascade seesaw model is carefully studied in both theoretical and phenomenological aspects including low-energy LFV constraints and LHC signatures.
- The main features and results:
 - A convenient parametrization is used to handle Yukawa couplings.
 - The constraints on LFV transitions are systematically considered. The strictest one comes from the upper bound on the decay $\mu \rightarrow e\gamma$, which gives the scalar VEV $v_{\phi} \gtrsim O(10^{-4})$ GeV for heavy masses of 200 300 GeV.
 - All relevant decays of new particles are examined for exploring LHC signatures.

For detecting Φ , the $4j2\ell^{\pm}$ signal is most important. And for Σ , the $2\ell^{\pm}2\ell^{\mp}2j$, $3\ell^{\pm}\ell^{\mp}2j$ and $3\ell^{\pm}2\ell^{\mp}+\not{\Sigma}$ signals are quite promising.

Tianiin Univ. of Tech

(日)

		Collider Phenomenology	Conclusions
Conclus	ions		

- The minimal cascade seesaw model is carefully studied in both theoretical and phenomenological aspects including low-energy LFV constraints and LHC signatures.
- The main features and results:
 - A convenient parametrization is used to handle Yukawa couplings.
 - The constraints on LFV transitions are systematically considered. The strictest one comes from the upper bound on the decay $\mu \rightarrow e\gamma$, which gives the scalar VEV $v_{\Phi} \gtrsim O(10^{-4})$ GeV for heavy masses of 200–300 GeV.

All relevant decays of new particles are examined for exploring LHC signatures.

For detecting Φ , the $4j2\ell^{\pm}$ signal is most important. And for Σ , the $2\ell^{\pm}2\ell^{\mp}2j$, $3\ell^{\pm}\ell^{\mp}2j$ and $3\ell^{\pm}2\ell^{\mp} + \not{ E} f$ signals are quite promising.

Tianiin Univ. of Tech

イロト イポト イヨト イヨ

	Collider Phenomenology	Conclusions

▲□▶ < 圕▶ < 필▶ < 필▶ < 필▶ < 필 <
 ♥ Q (~
 Tianjin Univ. of Tech.

Ji-Yuan Liu