ATLAS $t\bar{t}H$, $H \rightarrow b\bar{b}$ analysis towards Run-2

朱宏博

中科院高能物理研究所 邮箱:<u>zhuhb@ihep.ac.cn</u>

2014年TeV工作组学术研讨会,5月15-18日,中山大学

Outline

- Physics motivation
- Review of current analysis
- Analysis strategy towards Run-2
- Summary

Physics Motivation

٠

- To observe Higgs production and decay modes in various channels, including $t\bar{t}H$, $H \rightarrow b\bar{b} \rightarrow SM$ Higgs ?
- Unique opportunity of direct measurement of the top-Higgs Yukawa coupling without making assumptions on possible BSM contributions
 - Associated Higgs production ($t\bar{t}H$) to suppress overwhelming QCD multijet background, leaving $t\bar{t}$ +jets the dominant background

ATLAS Moriond Analysis

AT LAS

Signal signature

ATLAS-CONF-2014-011

- single lepton: 1 lepton (e/μ), 6 jets (4 *b*-jets)
- di-lepton: 2 leptons, 4 jets (4 b-jets)
- Analysis strategy with 20 fb⁻¹ 8 TeV data
 - categorise events in nJets and nBtags; signalrich regions: (5j, ≥4b), (≥6j, 3b) and (≥6j, ≥6b)
 - simultaneous binned likelihood fit in multiple signal and background regions (Neural Network output and HT, respectively)
 - learn from background regions to limit or constraint effects of systematic uncertainties in the signal regions, e.g. *tt*+jets related

Signal and Background Modelling

- Signal sample tterm H generated with POWHEL and showered with PYTHIA 8
- Dominant background sample $t\bar{t}$ +jets generated with POWHEG NLO generator and showered with PYTHIA 6
 - inclusive samples split into $t\bar{t}+b\bar{b}$, $t\bar{t}+c\bar{c}$ and $t\bar{t}+$ light jets
 - $t\bar{t}+b\bar{b}/c\bar{c}$ cross-checked with MADGRAPH 5 (à la CMS)
- Other background samples
 - W/Z+jets, WW/ZZ: Alpgen + Pythia 6
 - QCD multijet: data-driven

pT re-weighting applied to W+jets and $t\bar{t}$ +jets to improve data/MC agreement (motivated by 7 TeV top and W/Z analyses)

Preliminary Result

- No significant excess; combined upper limits set ($m_{\rm H} = 125$ GeV):
- 4.1 (2.6) × $\sigma/\sigma_{\rm SM}$ for observed (expected), best fit $\mu = 1.7 \pm 1.4$
- syst. uncert.: $t\bar{t}+b\bar{b}$ modelling, light jet mis-tagging, pT reweighing
- Future improvements towards publication, e.g.
 - new discrimination variables from the Matrix Element calculation PRL 111, 091802 (2013)

Analysis towards Run-2

- Raised center-of-mass energy to the design parameter 13/14 TeV
 - $t\bar{t}H$ cross-section increases faster than $t\bar{t}$ + jets \rightarrow better S/B
 - More boosted objects → challenging but also more handles on reconstruction of final state objects
- Increased integrated luminosity to ~250 fb⁻¹
 - to probe rare processes, including $t\bar{t}H$, $H \rightarrow b\bar{b}$
- Improved detector performance, in particular the Insertable B-layer (IBL) ← 4th pixel detector layer mounted on the beam pipe
 - Enhanced track and vertex reconstruction capability → improved rejection of pileup tracks/vertices; improved b-tagging efficiency for the same light and c-jet rejection rate

boosted
$$t\bar{t}H, H \rightarrow bb$$

Boosted *t̄tH*, H→bb̄ Analysis

- Harder Higgs and top pT spectra in tterf H, $_{0.01}$ compared to that in $t\bar{t}+b\bar{b} \rightarrow better S/N$
- At high enough pT (sufficiently boosted), decay products appear as heavy and collimated jets
- Conventional reconstruction algorithms fail to resolve the individual objects

Fat jet & jet substructure

- In Higgs searches, first proposed for the search for $VH, H \rightarrow b\bar{b}$ [Phys. Rev. Lett. 100, 242001], and later $t\bar{t}H, H \rightarrow b\bar{b}$ [Phys. Rev. Lett. 104, 111801]
- To tag both top and Higgs Fat jets in the $t\bar{t}H$, $H \rightarrow b\bar{b}$ analysis

Jet Substructure

٠

- Jet properties and substructure observables, to distinguish fat jets formed by products from boosted heavy particles from those originating from QCD light quarks
 - · Jet mass, kt splitting scales, N-subjettiness ...
 - Jet grooming algorithms, to minimise impact of pileup and underlying events
 - mass-drop filtering, trimming and pruning
- Systematic studies with 7 TeV data published in JHEP09(2013)076

Mass Drop Filtering

- Designed to identify relatively symmetric subjects, each with significantly smaller mass, e.g. $H \rightarrow b\bar{b}$.
 - <u>Mass-drop and symmetry</u>: split the C/A jet into two subjets (reverse the jet clustering algorithm), requirin(

$$\max[m^{j1}, m^{j2}]/m^{\text{jet}} < \mu_{\text{frac}}$$

$$\frac{\min[(p_T^{j1})^2, (p_T^{j2})^2]}{(m^{\text{jet}})^2} \times \Delta R_{j1,j2}^2 > y_{\text{cut}}$$

$$\boxed{\text{Filtering: recluster three harde:}}_{\text{Initial jet}} \qquad \boxed{(A = R_{\text{fit}} - min[0.3, \Delta R_{j1,j2}/2]} = \sum_{i=1}^{N} \sum_{k=1}^{N} \sum$$

10

Designed to identify relatively symmetric subjects, each with significantly smaller mass, e.g. $H \rightarrow b\bar{b}$.

Mass-drop Filtering

Filtering: reconstruct three hardest subjets using the radius parameter R_{filt}

SO

Mass-drop and symmetry: split the large-R C/A jet into two subjets (reverse the jet clustering algorithm), requiring

$$\max[m^{j1}, m^{j2}]/m^{\text{jet}} < \mu_{\text{frac}}$$

$$\frac{\min[(p_T^{j1})^2, (p_T^{j2})^2]}{(m^{\text{jet}})^2} \times \Delta R_{j1,j2}^2 > y_{\text{cut}}$$

$$R_{\text{filt}} = \min[0.3, \Delta R_{j1,j2}/2]$$
oft constituents (pileup ...) discarded
$$(A = R_{\text{filt}}) = C/A = R_{\text{filt}} = \min[0.3, \Delta R_{j1,j2}] \longrightarrow Filtered jet$$

Other Tagging Techniques

Shower deconstruction

٠

- construct likelihood based on subjets variables in shower history
- Phys. Rev. D 84, 074002, Phys. Rev. D 87, 054012, ATLAS-CONF-2014-003
- Buckets (JHEP02(2014)130) and Template Overlap method (Phys. Rev. D 85, 114046, JHEP07(2013)114)
- new ideas, not yet fully explored with data

Explore the proposed techniques and find out the most suitable for top and Higgs tagging

Other Ingredients

Subjet *b*-tagging

- b-tagging of the subjects provide extra information but non-trivial
- to utilise the full power of the tracking system (IBL!) and improve reconstruction algorithms to achieve the best performance
- Lepton isolation
 - lepton isolation critical in such busy environment
 - mini-isolation with variable cone size ΔR=KT/pT (already adopted for several 7/8 TeV analyses)

Top background

- Important to advance our understanding the top related background, in particular $t\bar{t}+b\bar{b}/t\bar{t}+c\bar{c}$
- Better to measure them directly

Summary

- Reviewed the ATLAS $t\bar{t}H$, $H \rightarrow b\bar{b}$ analysis with 8 TeV data
- Presented the analysis strategy of boosted $t\bar{t}H$, $H \rightarrow b\bar{b}$ towards Run-2 and selected jet substructure techniques
- The result from the boosted *t̄H*, *H*→*b̄b̄* will be eventually combined with that from the resolved analysis, not mentioned though, to achieve higher sensitivity.
- Joint efforts, among both home and overseas participants (e.g. IHEP & SJTU), on certain topics are being pursued. JOIN US if you are interested.

DATA will tell us more ...

Backup

Discrimination Variables

Variable	Definition				
Centrality	Sum of the $p_{\rm T}$ divided by sum of the <i>E</i> for all jets and the lepton				
H1	Second Fox-Wolfram moment computed using all jets and the lepton				
$m_{ m bb}^{ m min\ \Delta R}$	Mass of the combination of two <i>b</i> -tagged jets with the smallest ΔR				
$N_{40}^{ m jet}$	Number of jets with $p_{\rm T} \ge 40 \text{ GeV}$				
$\Delta R_{\rm bb}^{\rm avg}$	Average ΔR for all <i>b</i> -tagged jet pairs				
$m_{ii}^{\max p_{T}}$	Mass of the combination of any two jets with the largest vector sum $p_{\rm T}$				
Aplanarity _{b-jet}	1.5 λ_2 , where λ_2 is the second eigenvalue of the momentum tensor built with only <i>b</i> -tagged jets				
$H_{ m T}^{ m had}$	Scalar sum of jet $p_{\rm T}$				
$m_{jj}^{\min \Delta R}$	Mass of the combination of any two jets with the smallest ΔR				
$\Delta R_{\rm lep-bb}^{\rm min\ \Delta R}$	ΔR between the lepton and the combination of two <i>b</i> -tagged jets with the smallest ΔR				
$m_{\rm bj}^{\rm min \Delta R}$	Mass of the combination of a <i>b</i> -tagged jet and any jet with the smallest ΔR				
$m_{\mathrm{bj}}^{\mathrm{max} \mathrm{p_{T}}}$	Mass of the combination of a <i>b</i> -tagged jet and any jet with the largest vector sum $p_{\rm T}$				
$m_{\rm uu}^{\rm min \ \Delta R}$	Mass of the combination of two untagged jets with the smallest ΔR				
$p_{\mathrm{T}}^{\mathrm{jet5}}$	Fifth leading jet $p_{\rm T}$				
$\Delta R_{bb}^{\max p_{T}}$	ΔR between two <i>b</i> -tagged jets with the largest vector sum $p_{\rm T}$				
m _{bb} ^{max m}	Mass of the combination of two b-tagged jets with the largest invariant mass				
$p_{T,\mathrm{uu}}^{\mathrm{min}\;\Delta\mathrm{R}}$	Scalar sum of the $p_{\rm T}$'s of the pair of untagged jets with the smallest ΔR				
m _{jjj}	Mass of the jet triplet with the largest vector sum $p_{\rm T}$				
$\Delta R_{\rm uu}^{\rm min \ \Delta R}$	Minimum ΔR between two untagged jets				
$m_{bb}^{\max p_T}$	Mass of the combination of two <i>b</i> -tagged jets with the largest vector sum $p_{\rm T}$				

Table 4: List of variables used in the NN in the single lepton channel in at least one region. From the list, 10 variables are chosen in each region.

Ranking of the Variables

Variable	$(\geq 6j, \geq 4b)$	(≥ 6j, 3b)	$(5j, \ge 4b)$	(5j, 3b)
$\Delta R_{\rm bb}^{\rm avg}$	1	5	5	-
$m_{ m bb}^{ m min\ \Delta R}$	2	9	3	1
Centrality	3	2	1	-
H1	4	3	2	-
$p_{\mathrm{T}}^{\mathrm{jet5}}$	5	8	-	-
Aplanarity _{b-jet}	6	-	7	-
$m_{ m uu}^{ m min}$ $\Delta m R$	7	7	-	2
$\Delta R_{\rm bb}^{\rm max \ p_{\rm T}}$	8	-	-	-
$\Delta R_{\rm lep-bb}^{\rm min \ \Delta R}$	9	10	10	-
$m_{ m bj}^{ m max p_T}$	10	6	-	-
$N_{40}^{ m jet}$	-	1	4	-
$m_{ m bj}^{ m min~\Delta R}$	-	4	-	-
$m_{ii}^{max p_T}$	-	-	6	-
$\widetilde{H}_{\mathrm{T}}^{\mathrm{had}}$	-	-	8	-
$m_{ m jj}^{ m min \ \Delta R}$	-	-	9	-
m _{bb} ^{max m}	-	-	-	3
$p_{T,\mathrm{uu}}^{\mathrm{min}\;\Delta\mathrm{R}}$	-	-	-	4
$m_{ m jjj}$	-	-	-	5
$\Delta R_{ m uu}^{ m min \ \Delta R}$	-	-	-	6
$m_{ m bb}^{ m max \ p_T}$	-	-	-	7

Institute of High Energy Physics, CAS

2014 TeV Workshop, Sun Yat-sen University