Higgs Properties Measurement based on $H \rightarrow ZZ^* \rightarrow 4\ell$ with ATLAS

Haijun Yang (Shanghai Jiao Tong University)

The 9th Workshop of TeV Physics Working Group Sun Yat-sen University, Guangzhou, China May 15-18, 2014

Outline

- Standard Model and Discovery of Higgs Boson
- Higgs Production and Decays at LHC
- Event Selection of $H \rightarrow ZZ^* \rightarrow 4\ell$
- Measurement of Properties : mass, spin, CP, couplings
- o Summary

References: PLB 726 pp.88-119, pp. 120-144 ATLAS-CONF-2013-013 ATLAS-CONF-2013-034 ATLAS-CONF-2014-009

Standard Model and Discovery of the Higgs

Higgs boson is proposed to responsible for the electroweak symmetry breaking, particles acquire mass when interacting with the Higgs field.

The Higgs boson was discovered by ATLAS and CMS at LHC in July, 2012.
 F. Englert and P. Higgs won the Nobel Prize in Physics in 2013.

Higgs Boson Production at LHC

Higgs Boson Decay

Higgs decay branching

ratio at m_H=125 GeV

- ▶bb: 57.7% (huge QCD background)
- ➤ WW: 21.5% (easy identification in di-lepton mode, complex background)
- ττ: 6.3% (complex final states with τ leptonic and/or hadronic decays)
- ZZ*: 2.6% ("gold-plated", clean signature of 4-lepton, high S/B, excellent mass peak)
- γγ: 0.23% (excellent mass resolution, high sensitivity)

 $H \rightarrow ZZ^* \rightarrow 4I$ production rate: 1 out of 10¹³ collision events

$H \rightarrow ZZ^* \rightarrow 4\ell$ Overview

Extremely clean – "Gold-plated" channel Fully reconstructed final states Good mass resolution (~ 1.6-2.4 GeV)

- o High S/B ratio (~ 1-2)
- o Low decay branching fraction
- □ Currently statistically limited $\circ 4.6 \text{ fb}^{-1}$ @ 7 TeV + 20.7 fb⁻¹ @ 8 TeV $\circ \text{Expect 68 SM H} \rightarrow ZZ^* \rightarrow 4\ell$ (e,µ) events
- Properties measurement
 - o Higgs mass, spin, parity, couplings etc.
 - Critical to determine whether it is fully compatible with the SM Higgs boson

Event Selection

Trigger match with single and/or di-lepton trigger

Four sub-channels: 4e, 2e2µ, 2µ2e, 4µ

	Event Pre-selection				
	Electrons				
	"MultiLepton" quality GSF electrons with $E_{\rm T} > 7$ GeV and $ \eta < 2.47$				
	Muons				
	combined or segment-tagged muons with $p_{\rm T} > 6$ GeV and $ \eta < 2.7$				
	Maximum one calo-tagged or standalone muon				
	calo-tagged muons with $p_{\mathrm{T}} > 15\mathrm{GeV}$ and $ \eta < 0.1$				
standalo	ne muons with $p_{\rm T} > 6$ GeV, $2.5 < \eta < 2.7$ and $\Delta R > 0.2$ from closest segment-tagged				
	Event Selection				
Kinematic	Require at least one quadruplet of leptons consisting of two pairs of same-flavour				
Selection	opposite-charge leptons fulfilling the following requirements:				
	$p_{\rm T}$ thresholds for three leading leptons in the quadruplet 20, 15 and 10 GeV				
	Leading di-lepton mass requirement 50 GeV $< m_{12} < 106$ GeV				
	Sub-leading di-lepton mass requirement $m_{threshold} < m_{34} < 115$ GeV				
	Remove quadruplet if alternative same-flavour opposite-charge di-lepton gives $m_{\ell\ell} < 5$ GeV				
	$\Delta R(\ell, \ell') > 0.10(0.20)$ for all same (different) flavour leptons in the quadruplet.				
Isolation	Lepton track isolation ($\Delta R = 0.20$): $\Sigma p_T/p_T < 0.15$				
	Electron calorimeter isolation ($\Delta R = 0.20$) : $\Sigma E_T / E_T < 0.20$				
	Muon calorimeter isolation ($\Delta R = 0.20$) : $\Sigma E_T / E_T < 0.30$				
	Stand-Alone muons calorimeter isolation ($\Delta R = 0.20$) : $\Sigma E_T / E_T < 0.15$				
Impact	Apply impact parameter significance cut to all leptons of the quadruplet.				
Parameter	For electrons : $d_0/\sigma_{d_0} < 6.5$				
Significance	For muons : $d_0 / \sigma_{d_0} < 3.5$				

Background Estimation

Main background is $ZZ^{(*)}$ production

MC simulation, scaled to theoretical cross section

Reducible backgrounds:

- Zbb, Z+light jets, tt
- Estimated using data-driven methods
 - Define background-enriched/signal-depleted control reigions
 - Extrapolate to signal region using transfer factors

 Estimates agree well with data in control region where isolation and d₀ requirements are removed for subleading pair

Invariant Mass of 4-lepton

m₄[GeV] m₄₁ [GeV]

Selected Higgs Candidates

BR($H \rightarrow ZZ^*$) = 2.63%, BR($ZZ^* \rightarrow 4I$)=0.45% About 68 $H \rightarrow ZZ^* \rightarrow 4I$ events produced Observed 32 candidates (16 Higgs signal)

	Signal	ZZ*	$Z + jets, t\bar{t}$	Observed
4μ	6.3 ± 0.8	2.8 ± 0.1	0.55 ± 0.15	13
$2e2\mu/2\mu2e$	7.0 ± 0.6	3.5 ± 0.1	2.11 ± 0.37	13
4e	2.6 ± 0.4	1.2 ± 0.1	1.11 ± 0.28	6

0

$H \rightarrow ZZ^* \rightarrow 4\ell$:Mass Calibration

Higgs Detection Significance

	observed			expe	ected
data set	min p_0	significance	$m_H(p_0)$	$\min p_0(m_H)$	significance
		$[\sigma]$			$[\sigma]$
$\sqrt{s} = 7 \text{ TeV}$	2.5×10^{-3}	2.8	125.6 GeV	3.5×10^{-2}	1.8
$\sqrt{s} = 8 \text{ TeV}$	8.8×10^{-10}	6.0	124.1 GeV	2.8×10^{-5}	4.0
combined	2.7×10^{-11}	6.6	124.3 GeV	5.7×10^{-6}	4.4

- Signal significance
 6.6 σ (Measured)
 4.4 σ (Expected)
- → > 5σ discovery in H→ZZ*→4ℓ channel

Higgs Mass Measurement

Higgs Mass Measurements

Measurements of Higgs Signal Strength

→ Signal strength for $H \rightarrow ZZ^* \rightarrow 4\ell$: $\mu = 1.4 \pm 0.4$ ATLA

→ Combined signal strength $\mu = 1.3 \pm 0.2$ (ATLAS)

$$\mathcal{M} = \frac{S \times Br}{\left(S \times Br\right)_{SM}}$$

ATLAS-CONF-2014-009

$H \rightarrow ZZ^* \rightarrow 4l$: Spin and Parity

 In X→ ZZ^(*) → 4ℓ decays, m_{Z1}, m_{Z2} and the production and decay angles are sensitive to the spin-parity of X

- Construct a discriminant between different hypotheses using two different multivariate techniques:
 - BDT (machine learning)
 - J^P-MELA (use theoretical differential decay rates to construct a matrix element based likelihood ratio)
- Use events in range $115 < m_{4\ell} < 130 \; {
 m GeV}$
- Test SM 0⁺ hypothesis against alternative hypotheses 0⁻, 1⁺, 1⁻, 2⁺_m

$H \rightarrow ZZ^* \rightarrow 4l$: Spin and Parity

BDT analysis variables:

 m_{Z1} , m_{Z2} from Higgs --> ZZ* \rightarrow 4l + production and decay angles

Exclusion (1-CL_s):

Observed 0⁻ exclusion 97.8% Observed 1⁺ exclusion 99.8% Observed 2⁺_m exclusion 83.2%

			BDT analysis					
		tested	J^{P} for	tested 0 ⁺ for				
		an assu	med 0 ⁺	an assumed J^P	CLS			
		expected	observed	observed*				
0-	p_0	0.0037	0.015	0.31	0.022			
1+	p_0	0.0016	0.001	0.55	0.002			
1-	p_0	0.0038	0.051	0.15	0.060			
2_{m}^{+}	p_0	0.092	0.079	0.53	0.168			
2-	p_0	0.0053	0.25	0.034	0.258			

Probing Higgs Production

• Event characteristics allow measurement of signal strength from different production modes

Candidate event with $m_{4\ell} = 123.5$ GeV in VBF-like category

Higgs Production: ggF vs.VBF

19

Fermion and Vector Couplings

Coupling scale factors 2-parameter benchmark model: $\kappa_V = \kappa_W = \kappa_Z$ $\kappa_F = \kappa_t = \kappa_b = \kappa_c = \kappa_{\tau} = \kappa_q$

(Gluon coupling are related to top, b, and their interference in tree level loop diagrams)

Assume no BSM contributions to loops: $gg \rightarrow H$ and no BSM decays (no invisible decays)

$$\kappa_V = 1.15 \pm 0.08$$

 $\kappa_F = 0.99^{+0.17}_{-0.15}$.

 $\Rightarrow \kappa_F = 0$ is excluded (>5 σ)

$$\frac{\sigma \cdot B (gg \to H \to \gamma \gamma)}{\sigma_{\rm SM}(gg \to H) \cdot B_{\rm SM}(H \to \gamma \gamma)} = \frac{\kappa_g^2 \cdot \kappa_\gamma^2}{\kappa_H^2}$$

See Xin Chen's talk for direct evidence of $H \rightarrow ff$

Summary

- □ With 2011 (4.6 fb⁻¹ @ 7TeV) and 2012 (20.7 fb⁻¹ @ 8 TeV) datasets, the Higgs boson is observed in the H→ZZ*→4 ℓ channel with local significance of 6.6 σ .
- □ The best fit mass of the Higgs boson from $H \rightarrow ZZ^* \rightarrow 4\ell$ $m_H = 124.3 \stackrel{+0.6}{_{-0.5}}(stat) \stackrel{+0.5}{_{-0.3}}(sys) \text{ GeV}$

Combined Higgs mass

$$m_H = 125.5 \pm 0.2 ({
m stat})^{+0.5}_{-0.6} ({
m sys})\,{
m GeV}$$

- The ratio of signal strength for bosonic (VBF+VH) and fermionic (ggF+ttH) production modes are measured, evidence of VBF production is 4.1σ .
- □ The ATLAS data is found to favour the Standard Model Higgs boson $J^P = 0^+$ hypothesis.

Backup

Higgs Width

□ Using per-event-error method, direct limit on the total width of the Higgs boson LH < 2.6 GeV @ 95% C.L.

 $\Gamma_{\rm H}$ [GeV]

Measurements of Higgs Signal Strength

→ Signal strength: μ=1.3±0.2(ATLAS) → μ = 0.8 ±0.14 (CMS)

PLB 726 pp.88-119

Higgs Mass and Signal Strength

 $M_H = 124.3^{+0.6}_{-0.5} (\text{stat})^{+0.5}_{-0.3} (\text{syst}) \text{ GeV}$ $\mu = \sigma_{obs} / \sigma_{SM} = 1.7^{+0.5}_{-0.4}$

Background Estimation

Table 3: Summary of the estimated numbers of Z + jets and $t\bar{t}$ background events for the 20.7 fb⁻¹ of $\sqrt{s} = 8$ TeV data and for the 4.6 fb⁻¹ of $\sqrt{s} = 7$ TeV data for the full mass range of the analysis after the kinematic selections described in the text. The sub-leading same sign full analysis event counts are given only for $m_{4\ell} < 160$ GeV to avoid contamination from the irreducible $ZZ^{(*)}$ background with an incorrect charge measurement. Approximately 80% of the reducible background has $m_{4\ell} < 160$ GeV. The "†" symbol indicates the estimates used for the background normalisation, the others being cross-checks. The first uncertainty is statistical, the second is systematic.

method	estimate at $\sqrt{s} = 8 \text{ TeV}$	estimate at $\sqrt{s} = 7 \text{ TeV}$
	4μ	4μ
m_{12} fit: Z + jets contribution	$2.4 \pm 0.5 \pm 0.6^{\dagger}$	$0.22 \pm 0.07 \pm 0.02^{\dagger}$
m_{12} fit: $t\bar{t}$ contribution	$0.14 \pm 0.03 \pm 0.03^{\dagger}$	$0.03 \pm 0.01 \pm 0.01^{\dagger}$
$t\bar{t}$ from $e\mu + \mu\mu$	$0.10 \pm 0.05 \pm 0.004$	-
	2e2µ	2e2µ
m_{12} fit: Z + jets contribution	$2.5 \pm 0.5 \pm 0.6^{\dagger}$	$0.19 \pm 0.06 \pm 0.02^{\dagger}$
m_{12} fit: $t\bar{t}$ contribution	$0.10 \pm 0.02 \pm 0.02^{\dagger}$	$0.03 \pm 0.01 \pm 0.01^{\dagger}$
$t\bar{t}$ from $e\mu + \mu\mu$	$0.12 \pm 0.07 \pm 0.005$	-
	2µ2e	2µ2e
$\ell\ell + e^{\pm}e^{\mp}$ relaxed cuts	$5.2 \pm 0.4 \pm 0.5^{\dagger}$	$1.8 \pm 0.3 \pm 0.4$
$\ell\ell + e^{\pm}e^{\mp}$ inverted cuts	$3.9 \pm 0.4 \pm 0.6$	-
$3\ell + \ell$ (same-sign)	$4.3 \pm 0.6 \pm 0.5$	$2.8 \pm 0.4 \pm 0.5^{\dagger}$
sub-leading same sign full analysis events	4	0
	4e	4e
$\ell\ell + e^{\pm}e^{\mp}$ relaxed cuts	$3.2 \pm 0.5 \pm 0.4^{\dagger}$	$1.4 \pm 0.3 \pm 0.4$
$\ell\ell + e^{\pm}e^{\mp}$ inverted cuts	$3.6 \pm 0.6 \pm 0.6$	
$3\ell + \ell$ (same-sign)	$4.2 \pm 0.5 \pm 0.5$	$2.5 \pm 0.3 \pm 0.5^{\dagger}$
sub-leading same sign full analysis events	3	2

Selected Events

Table 7: The numbers of expected signal events for the $m_H=125$ GeV hypothesis and background events together with the numbers of observed events, in a window of ± 5 GeV around 125 GeV for 20.7 fb⁻¹ at $\sqrt{s} = 8$ TeV and 4.6 fb⁻¹ at $\sqrt{s} = 7$ TeV as well as for their combination.

	total signal	signal	$ZZ^{(*)}$	Z + jets, $t\bar{t}$	S/B	expected	observed
	full mass range						
			$\overline{s} = 8 \text{ TeV}$				
4μ	5.8 ± 0.7	5.3 ± 0.7	2.3 ± 0.1	0.50 ± 0.13	1.9	8.1 ± 0.9	11
$2\mu 2e$	3.0 ± 0.4	2.6 ± 0.4	1.2 ± 0.1	1.01 ± 0.21	1.2	4.8 ± 0.7	4
$2e2\mu$	4.0 ± 0.5	3.4 ± 0.4	1.7 ± 0.1	0.51 ± 0.16	1.5	5.6 ± 0.7	6
4e	2.9 ± 0.4	2.3 ± 0.3	1.0 ± 0.1	0.62 ± 0.16	1.4	3.9 ± 0.6	6
total	15.7 ± 2.0	13.7 ± 1.8	6.2 ± 0.4	2.62 ± 0.34	1.6	22.5 ± 2.9	27
			$\overline{s} = 7 \text{ TeV}$				
4μ	1.0 ± 0.1	0.97 ± 0.13	0.49 ± 0.02	0.05 ± 0.02	1.8	1.5 ± 0.2	2
$2\mu 2e$	0.4 ± 0.1	0.39 ± 0.05	0.21 ± 0.02	0.55 ± 0.12	0.5	1.2 ± 0.1	1
$2e2\mu$	0.7 ± 0.1	0.57 ± 0.08	0.33 ± 0.02	0.04 ± 0.01	1.5	0.9 ± 0.1	2
4e	0.4 ± 0.1	0.29 ± 0.04	0.15 ± 0.01	0.49 ± 0.12	0.5	0.9 ± 0.1	0
total	2.5 ± 0.4	2.2 ± 0.3	1.17 ± 0.07	1.12 ± 0.17	1.0	4.5 ± 0.5	5
		$\sqrt{s} = 8 \text{ TeV}$	V and $\sqrt{s} = 7$	7 TeV			
4μ	6.8 ± 0.8	6.3 ± 0.8	2.8 ± 0.1	0.55 ± 0.15	1.9	9.6 ± 1.0	13
$2\mu 2e$	3.4 ± 0.5	3.0 ± 0.4	1.4 ± 0.1	1.56 ± 0.33	1.0	6.0 ± 0.8	5
$2e2\mu$	4.7 ± 0.6	4.0 ± 0.5	2.1 ± 0.1	0.55 ± 0.17	1.5	6.6 ± 0.8	8
4e	3.3 ± 0.5	2.6 ± 0.4	1.2 ± 0.1	1.11 ± 0.28	1.1	4.9 ± 0.8	6
total	18.2 ± 2.4	15.9 ± 2.1	7.4 ± 0.4	3.74 ± 0.93	1.4	27.1 ± 3.4	32

Constraints on BSM

New heavy particles may contribute to loops

- Introduce effective κ_g , κ_γ to allow heavy BSM particles contribute to the loops
- Tree-level couplings: $\kappa_W, \kappa_Z, \kappa_t, \kappa_b, \kappa_\tau$ etc set to 1
 - Absorb all difference into loop couplings
 - Indirectly fixed normalization of Hiags width

3D Compatibility with SM: 18%

Couplings tested for anomalies w.r.t. fermion and boson, W/Z & vertex loop contributions at \pm 10%-15% precision

Constraints on BSM Loops

New particles may contribute to loops

- Introduce effective κ_g, κ_γ to allow heavy BSM particles contribute to the loops
- Tree-level couplings: $\kappa_W, \kappa_Z, \kappa_t, \kappa_b, \kappa_\tau$ set to 1
 - Absorb all difference into loop couplings
 - Indirectly fixed normalization of Higgs width

$$\Gamma_{\rm H} = \frac{\kappa_{\rm H}^2(\kappa_i)}{(1 - {\rm BR}_{\rm i.,u.})} \Gamma_{\rm H}^{\rm SM}$$

$$\kappa_{g} = 1.00^{+0.23}_{-0.16}$$

 $\kappa_{\gamma} = 1.17^{+0.16}_{-0.13}$

 $BR_{i.,u.} = -0.16^{+0.29}_{-0.30}$

ATLAS Data Samples

7 TeV data samples (2011)

- -4.6 fb⁻¹ for physics analysis
- Peak luminosity 3.6×10^{33} cm⁻²s⁻¹

8 TeV data samples (2012)

- -20.7 fb⁻¹ for physics analysis
- Peak luminosity 7.7×10^{33} cm⁻²s⁻¹
- **Data-taking efficiency: ~95.5%**

□ Significant pileup events

Major Challenge (Large Pileup)

□ Large pileup events result in big challenge to the detector, reconstruction and particle identification !!!

Higgs Couplings

Following recommendations in LHCHXSWG-2012-001, probe benchmark model:

- All fermion couplings modified by single factor k_F
- All massive boson couplings modified by a single factor k_V
- No non-SM contributions to the Higgs total decay width
- The ratio $\lambda_{FV} = k_F/k_V$

Assumption on total width is relaxed

Is it the SM Higgs Boson?

✤ Higgs production (m_H = 125 GeV)

Couplings (new force!) • : fermions

: vector bosons

Spin and Parity

g_F (Yukawa coupling) = $\sqrt{2} \times m_F/\nu$ g_V (Gauge coupling) = $2m_V^2/\nu$ (v is the vacuum expectation value)

Coupling Measurements

Coupling strengths $\kappa_i \&$ ratio: $\kappa_F = g_F/g_{F,SM}$, $\kappa_V = g_V/g_{V,SM}$, $\lambda_{ij} = \kappa_i / \kappa_j$

Model	Probed	Parameters of	Functional assumptions			umpti	ions	Example: $gg \rightarrow H \rightarrow \gamma\gamma$
	couplings	interest	ΚV	K _F	Кg	κγ	КН	
1	Couplings to	κ_V, κ_F	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$\kappa_F^2 \cdot \kappa_\gamma^2(\kappa_F,\kappa_V)/\kappa_H^2(\kappa_F,\kappa_V)$
2	fermions and bosons	$\lambda_{FV}, \kappa_{VV}$	\checkmark	\checkmark	\checkmark	\checkmark	-	$\kappa_{VV}^2 \cdot \lambda_{FV}^2 \cdot \kappa_{\gamma}^2(\lambda_{FV}, \lambda_{FV}, \lambda_{FV}, 1)$
3	Custodial symmetry	$\lambda_{WZ}, \lambda_{FZ}, \kappa_{ZZ}$	-	\checkmark	\checkmark	\checkmark	-	$\kappa_{ZZ}^2 \cdot \lambda_{FZ}^2 \cdot \kappa_{\gamma}^2(\lambda_{FZ}, \lambda_{FZ}, \lambda_{FZ}, \lambda_{WZ})$
4	eustoular symmetry	$\lambda_{WZ}, \lambda_{FZ}, \lambda_{\gamma Z}, \kappa_{ZZ}$	-	\checkmark	\checkmark	-	-	$\kappa^2_{ZZ} \cdot \lambda^2_{FZ} \cdot \lambda^2_{\gamma Z}$
5	Vertex loops	<i>Кg</i> , <i>Кү</i>	=1	=1	-	-	\checkmark	$\kappa_g^2 \cdot \kappa_\gamma^2 / \kappa_H^2(\kappa_g,\kappa_\gamma)$

Spin Analysis with $H \rightarrow \gamma \gamma$

Spin Analysis With $H \rightarrow WW^*$

$J^{P} = 0^{+} vs 2^{+}$

$f_{q\bar{q}}$	2^+ assumed Exp. $p_0(J^P = 0^+)$	0^+ assumed Exp. $p_0(J^P = 2^+)$	Obs. $p_0(J^P = 0^+)$	Obs. $p_0(J^p = 2^+)$	$\operatorname{CL}_{\mathrm{s}}(J^p=2^+)$
100%	0.013	$3.6 \cdot 10^{-4}$	0.541	$1.7 \cdot 10^{-4}$	$3.6 \cdot 10^{-4}$
75%	0.028	0.003	0.586	0.001	0.003
50%	0.042	0.009	0.616	0.003	0.008
25%	0.048	0.019	0.622	0.008	0.020
0%	0.086	0.054	0.731	0.013	0.048

Exclusion (1- CL_s):

Observed 2⁺ (qq=100%) exclusion 99.96% Observed 2⁺ (qq = 0%) exclusion 95.2%

$H \rightarrow ZZ^* \rightarrow 4l$: Spin and CP

- For $J^P = 2_m^+$ model:
 - Graviton-like tensor with minimal couplings to SM particles
 - See Phys. Rev. D81 (2010) 075022
 - Production via gg or qq
- Scan fraction of qq production between 0 and 100%
- Sensitivity is stable as a function of qq fraction
- Observed exclusion (0⁺ vs 2⁺_m) at 83.2 CL for 100% ggF produced state

Value of test statistic, q, as a function of the $q\bar{q}$ production fraction, $f_{q\bar{q}}$

ATLAS Trigger

Table 9: Summary of the triggers that are used during the 2012 data taking for the three analysis channels. When multiple chains are indicated, it is intended that the OR among them is requested.

Channel	Single-lepton	Di-lepton
4e	e24vhi_medium1, e60_medium1	2e12Tvh_loose1, 2e12Tvh_loose1_L2StarB(only data)
4μ	mu24i_tight, mu36_tight	2mu13, mu18_mu8_EFFS
2e2µ	4μ OR 4 <i>e</i> OR e12T	vh_medium1_mu8 OR e24vhi_loose1_mu8

Table 10: Summary of the triggers that are used during the 2011 data taking. In each data taking period, the OR of single and di-lepton triggers is used to select each signature.

	Single-lepton triggers				
Period	B-I	J	К	L-M	
4μ	EF_mu18_MG	EF_mu18_MG_medium	EF_mu18_MG_medium	EF_mu18_MG_medium	
4e	EF_e20_medium EF_e20_medium		EF_e22_medium	EF_e22vh_medium1	
$2e2\mu$	$4\mu \text{ OR } 4e$				
		Di-lepton t	riggers		
Period	B-I	J	К	L-M	
4μ	EF_2mu10_loose	EF_2mu10_loose EF_2mu10_loose		EF_2mu10_loose	
4e	EF_2e12_medium	EF_2e12_medium	EF_2e12T_medium	EF_2e12Tvh_medium	
2e2µ	4μ OR $4e$ OR EF_e10_medium_mu6				

Higgs Production and Decays

Table 2: Higgs boson production cross sections for gluon fusion, vector-boson fusion and associated production with a W or Z boson in pp collisions at \sqrt{s} of 7 TeV and 8 TeV [11]. The quoted uncertainties correspond to the total theoretical systematic uncertainties with linear sum of QCD scale and PDF+ α_s uncertainties. The production cross section for the associated production with a W or Z boson is negligibly small for $m_H > 300$ GeV. The decay branching ratio for $H \rightarrow 4\ell$, with $\ell = e$ or μ , is reported in the last column [11].

m_H	$\sigma(gg \rightarrow H)$	$\sigma\left(qq' \rightarrow Hqq'\right)$	$\sigma\left(q\bar{q}\rightarrow WH\right)$	$\sigma\left(q\bar{q}\rightarrow ZH\right)$	$\mathrm{BR}\left(H \to ZZ^{(*)} \to 4\ell\right)$
[GeV]	[pb]	[pb]	[pb]	[pb]	[10 ⁻³]
			$\sqrt{s} = 7$ TeV		
123	$15.8^{+2.3}_{-2.4}$	1.25 ± 0.03	$0.60\substack{+0.02\\-0.03}$	0.33 ± 0.02	0.103
125	15.3 ± 2.3	1.22 ± 0.03	0.57 ± 0.02	0.32 ± 0.02	0.125
127	14.9 ± 2.2	1.20 ± 0.03	0.54 ± 0.02	0.30 ± 0.02	0.148
			$\sqrt{s} = 8$ TeV		
123	20.2 ± 3.0	1.61 ± 0.05	0.73 ± 0.03	0.42 ± 0.02	0.103
125	19.5 ± 2.9	$1.58\substack{+0.04\\-0.05}$	0.70 ± 0.03	0.39 ± 0.02	0.125
127	18.9 ± 2.8	1.55 ± 0.05	$0.66^{+0.02}_{-0.03}$	0.37 ± 0.02	0.148

Signal Model

- Signal templates derived from simulation:
 - Events generated using POWHEG (NLO generator) + PYTHIA (parton showering)
 - NLO cross sections/branching ratios + QCD/EW corrections
 - Separate templates for each channel used in m₄₁ fit
- Methods added to improve mass resolution:
 - Final state radiation (FSR) recovery adds photons nearby to muons back into m₄?
 - Correction on 4% of 4µ events with 85% purity
 - Z mass constraint procedure improves resolution by 12-20%
 - Kinematic parameters of leading lepton pair (m₁₂) modified within errors to maximize probability with respect to Z mass PDF
 - Applied to m₃₄ if m₄₇ > 190 GeV

40

m.

Invariant Mass of 4-lepton

m₄[GeV] m₄₁ [GeV]

MVA Discriminant: Higgs Spin and CP

BR of $Z \rightarrow 4\ell$

Branching fraction result uses an error weighted combination of the 7 and 8 TeV results. For $M_{\ell\ell} > 5$ GeV:

Quantity	\sqrt{s}	Value
Measured	7 TeV	$(2.67 \pm 0.62 \text{ (stat)} \pm 0.14 \text{ (syst)}) \times 10^{-6}$
	8 TeV	$(3.33 \pm 0.27 \text{ (stat)} \pm 0.11 \text{ (syst)}) \times 10^{-6}$
	Combined	$(3.20 \pm 0.25 \text{ (stat)} \pm 0.12 \text{ (syst)}) \times 10^{-6}$
Expected		$(3.33 \pm 0.01) \times 10^{-6}$

For $M_{\ell\ell} > 4 \text{ GeV}$

- We observe $(4.31 \pm 0.34 \text{ (stat)} \pm 0.16 \text{ (syst)}) \times 10^{-6}$ and expect $(4.50 \pm 0.01) \times 10^{-6}$,
- CMS observes $(4.2^{+0.9}_{-0.8} \text{ (stat)} \pm 0.2 \text{ (syst)}) \times 10^{-6}$ and expects 4.45×10^{-6} .

Search for High Mass $H \rightarrow ZZ$, WW

ATLAS-CONF-2013-067

Extend the Higgs search to high mass assume SM-like width, and decay to WW/ZZ

95% C.L. exclusion of a SM-like heavy Higgs up to ~ 650 GeV

Large Hadron Collider at CERN

The ATLAS Detector

Particle Detection

□ Different particles have different signatures in detectors

Higgs Width (CMS)

https://cds.cern.ch/record/1670066/files/HIG-14-002-pas.pdf

The production cross section as a function of m_{ZZ} can be written as:

$$\frac{d\sigma_{\rm gg\to H\to ZZ}}{dm_{ZZ}^2} \propto g_{\rm ggH}^2 g_{\rm HZZ}^2 \frac{F(m_{ZZ})}{(m_{ZZ}^2 - m_{\rm H}^2)^2 + m_{\rm H}^2 \Gamma_{\rm H}^2},$$
(1)

where g_{ggH} (g_{HZZ}) is the coupling constant of the Higgs boson to gluons (to Z bosons), and $F(m_{ZZ})$ is a function which depends on the (virtual) Higgs and Z boson production and decay dynamics. In the resonant and off-shell regions, the integrated cross sections are

$$\sigma_{\rm gg \to H \to ZZ}^{\rm on-peak} \propto \frac{g_{\rm ggH}^2 g_{\rm HZZ}^2}{\Gamma_{\rm H}}, \quad \sigma_{\rm gg \to H \to ZZ}^{\rm off-peak} \propto g_{\rm ggH}^2 g_{\rm HZZ}^2.$$
 (2)

	4ℓ	$2\ell 2\nu$	Combined
Expected 95% CL limit, r	11.5	10.7	8.5
Observed 95% CL limit, r	6.6	6.4	4.2
Observed 95% CL limit, $\Gamma_{\rm H}(MeV)$	27.4	26.6	17.4
Observed best fit, r	$0.5 \substack{+2.3 \\ -0.5}$	$0.2 {}^{+2.2}_{-0.2}$	$0.3^{+1.5}_{-0.3}$
Observed best fit, $\Gamma_{H}(MeV)$	$2.0 \stackrel{+9.6}{_{-2.0}}$	$0.8 \stackrel{+9.1}{_{-0.8}}$	$1.4 {+6.1 \atop -1.4}$

Higgs Width (CMS)

https://cds.cern.ch/record/1670066/files/HIG-14-002-pas.pdf

