

TeV Physics Workshop, GuangZhou, China 2014.05.16

Multi-boson production and anomalous quartic gauge boson coupling at the LHC

Qiang Li HEP Group, *Peking University, Beijing, China*

HEP Group, Peking Univ., China Prof. Yajun Mao, Yong Ban, Sijin Qian Siguang Wang, Dayong Wang, Qiang Li

http://hepfarm02.phy.pku.edu.cn/drupal/

Outline

- LHC Status and Future Plan
- Anomalous Quartic Gauge Couplings
- ATLAS and CMS Results
- MC Studies
- Summary

• LHC Status and Future Plan

LHC Run - 1

Successful LHC run in 2010-2012

- □ Similar for ATLAS & CMS:
 - ~ 5 fb⁻¹ 7 TeV data
 - ~ 20 fb⁻¹ 8 TeV data

- Peak luminosity at 2012:
 7.7 * 10 33 cm-2s-1
 - (~30 pileup events)
- Data quality (2012):
 93.7% ready for physics

HL-LHC 3' 000 fb⁻¹

(Extended) Year End Technical Stop: (E) YETS

1995	2000	2005	2010	2015	2020	2025	2030	2035	2040	2045	2050	2055
Proto & Industr.	Constr. 8	a Install.	Physics			LHC						
HL-LI	НС	Stuty- R&D	Proto & Industr.	Constr &	Install.	Physics						
HE-L	.HC		Study. R	&D	Proto & Industr.	Construc and Insta	tions allation	Physics			reuse HE-l magnets?	LHC
VHE- lepto	-LHC ns	÷	Study - R	&D	Tunnel construc	tion	Install LER	Physics TLEP LHeC	Constr. a Install. VI	nd HE	Physics V	HE
						Constr. L	ER	Constr. V	ΉE			

HL-LHC (~2022-2030) E_{COM} =14 TeV, $\hat{L} \sim 5 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$ with luminosity leveling

HE-LHC: in LHC tunnel (2035-) E_{CoM} =33 TeV, $\hat{L} = 5 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$

VHE-LHC/FCC: new 80 km tunnel E_{COM} =84-104 TeV, $\hat{L} = 5 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$

Frank Zimmermann

Snowmass Studies

For long range physics planning at Snowmass, we wanted to make a physics case

- with high luminosity running, higher energy, etc.

It was decided to use parameterized detector, called <u>Snowmass Combined LHC detector</u>

Snowmass Energy Frontier Simulations, arXiv:1309.1057, Sept. 2013

"Components" from the ATLAS and CMS detectors:

- CMS tracker
- ATLAS Calorimeter
- CMS B-Field, etc

Chinese CEPC 100TeV R&D in collaboration with snowmass/FCC group: Qi-Shu Yan, Manqi Ruan, Bin Zhang, Qiang Li + M. Narain, S. Padhi, TaoHan+....

• Anomalous Quartic Gauge Couplings

Physics Motivations

- Rare processes, Crucial test of the SM:
 e.g. on the non-Abelian gauge symmetry part of the SM
- Important backgrounds to Higgs and new physics searches
- Sensitive to anomalous Quartic Gauge Couplings Indirect probe on new physics Much less studied compared with aTGC

Helmholtz Alliance PHYSICS AT THE TERASCALE

Anomalous Quartic Gauge Couplings

30 September -2 October 2013 TU Dresden

Topics

- aQGC in V V \rightarrow V V, $\gamma\gamma \rightarrow$ V V, V \rightarrow V V V

- Theory status of all SM processes
- aQGC and BSM physics
- Anomalous couplings in EFT
- Partially strong V V scattering
- Unitarisation issues
- Prospects for 13/14 TeV

- Monte Carlo generators

Organizing Committee: Matthew Herndon (U Wisconsin) Christophe Grojean (ICREA/IFAE & CERN) Barbara Jäger (U Mainz) Michael Kobel (TU Dresden) Sabine Lammers (Indiana U) Yurii Maravin (Kansas State U) Kalanand Mishra (FNAL) Jürgen Reuter (DESY) Thomas Schörner-Sadenius (DESY) Anja Vest (TU Dresden)

> Registration deadline: 15 September 2013

Contact: anacen@desy.de or more information and in order to register please go to:

http://www.terascale.de/aqgc2013

The aims are to bring together theorists and experimentalists to discuss theoretical and experimental status of all processes sensitive to aQGC,

models for parametrizing aQGC and (partially) strong VV scattering.

issues of unitarization prescriptions,

available Monte Carlo Generators and validation procedures,

experimental prospects for the 13-14 TeV runs at LHC,

Wish lists of experimentalists and theorists: WAA, ZAA, WWA,..., EWK WW, WZ, ZZ, WA, ZA....

Request SU(2) \otimes U(1) gauge symmetry and independently conserved C, P

$$\mathcal{L}_{6} = \frac{k_{0}^{\gamma\gamma}}{\Lambda^{2}} \mathcal{W}_{0}^{\gamma} + \frac{k_{c}^{\gamma\gamma}}{\Lambda^{2}} \mathcal{W}_{c}^{\gamma} + \frac{k_{0}^{W}}{\Lambda^{2}} \mathcal{W}_{0}^{Z} + \frac{k_{c}^{W}}{\Lambda^{2}} \mathcal{W}_{c}^{Z} + \sum_{i=1,2,3} \frac{k_{i}^{W}}{\Lambda^{2}} \mathcal{W}_{i}^{Z}$$

$$WW\gamma\gamma \qquad \qquad WWZ\gamma$$

$$W_{0}^{Z} = -\frac{e^{2}g^{2}}{2} F_{\mu\nu}F^{\mu\nu}W^{+\alpha}W_{\alpha}^{-},$$

$$\mathcal{W}_{c}^{\gamma} = -\frac{e^{2}g^{2}}{2} F_{\mu\nu}F^{\mu\alpha}(W^{+\nu}W_{\alpha}^{-} + W^{-\nu}W_{\alpha}^{+})$$

$$W_{c}^{\gamma} = -\frac{e^{2}g^{2}}{4} F_{\mu\nu}F^{\mu\alpha}(W^{+\nu}W_{\alpha}^{-} + W^{-\nu}W_{\alpha}^{+})$$

$$W_{c}^{Z} = -\frac{e^{2}g^{2}}{2c_{w}s_{w}}F^{\mu\nu}(W_{\mu\nu}^{+}W_{\alpha}^{-}Z^{\alpha} + W_{\mu\nu}^{-}W_{\alpha}^{-})$$

$$W_{c}^{Z} = -\frac{e^{2}g^{2}}{2c_{w}s_{w}}F^{\mu\nu}(W_{\mu\nu}^{+}W_{\alpha}^{-}Z^{\alpha} + W_{\mu\nu}^{-}W_{\alpha}^{-})$$

LEP Parametrization

$$\begin{split} \mathcal{W}_{0}^{Z} &= -e^{2}g^{2}F_{\mu\nu}Z^{\mu\nu}W^{+\alpha}W_{\alpha}^{-} \\ \mathcal{W}_{c}^{Z} &= -\frac{e^{2}g^{2}}{2}F_{\mu\nu}Z^{\mu\alpha}(W^{+\nu}W_{\alpha}^{-}+W^{-\nu}W_{\alpha}^{+}) \\ \mathcal{W}_{1}^{Z} &= -\frac{e^{2}g^{2}}{2c_{w}s_{w}}F^{\mu\nu}(W_{\mu\nu}^{+}W_{\alpha}^{-}Z^{\alpha}+W_{\mu\nu}^{-}W_{\alpha}^{+}Z^{\alpha}) \\ \mathcal{W}_{2}^{Z} &= -\frac{e^{2}g^{2}}{2c_{w}s_{w}}F^{\mu\nu}(W_{\mu\alpha}^{+}W^{-\alpha}Z_{\nu}+W_{\mu\alpha}^{-}W^{+\alpha}Z_{\nu}) \\ \mathcal{W}_{3}^{Z} &= -\frac{e^{2}g^{2}}{2c_{w}s_{w}}F^{\mu\nu}(W_{\mu\alpha}^{+}W_{\nu}^{-\alpha}Z^{\alpha}+W_{\mu\alpha}^{-}W_{\nu}^{+}Z^{\alpha}) \end{split}$$

http://feynrules.irmp.ucl.ac.be/wiki/AnomalousGaugeCoupling#no1

$$\mathcal{L}_{S,0} = \left[\left(D_{\mu} \Phi \right)^{\dagger} D_{\nu} \Phi \right] \times \left[\left(D^{\mu} \Phi \right)^{\dagger} D^{\nu} \Phi \right]$$

$$\mathcal{L}_{M,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right]$$

$$\mathcal{L}_{M,1} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$

$$\mathcal{L}_{M,2} = \left[B_{\mu\nu} B^{\mu\nu} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right]$$

$$\mathcal{L}_{M,3} = \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$

$$\mathcal{L}_{M,4} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} D^{\mu} \Phi \right] \times B^{\beta\nu}$$

$$\mathcal{L}_{M,5} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} D^{\nu} \Phi \right] \times B^{\beta\mu}$$

$$\mathcal{L}_{M,6} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\mu} \Phi \right]$$

$$\mathcal{L}_{M,7} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\nu} \Phi \right]$$

$$\mathcal{L}_{T,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \operatorname{Tr} \left[\hat{W}_{\alpha\beta} \hat{W}^{\alpha\beta} \right]$$

$$\mathcal{L}_{T,1} = \operatorname{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\mu\beta} \hat{W}^{\alpha\nu} \right]$$

$$\mathcal{L}_{T,2} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\beta\nu} \hat{W}^{\nu\alpha} \right]$$

$$\mathcal{L}_{T,5} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times B_{\alpha\beta} B^{\alpha\beta}$$

$$\mathcal{L}_{T,6} = \operatorname{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times B_{\mu\beta} B^{\alpha\nu}$$

$$\mathcal{L}_{T,7} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times B_{\beta\nu} B^{\nu\alpha}$$

$$\mathcal{L}_{T,8} = B_{\mu\nu} B^{\mu\nu} B_{\alpha\beta} B^{\alpha\beta}$$

$$\mathcal{L}_{T,9} = B_{\alpha\mu} B^{\mu\beta} B_{\beta\nu} B^{\nu\alpha}$$

 $\mathcal{L}_{S,1} = \left[\left(D_{\mu} \Phi \right)^{\dagger} D^{\mu} \Phi \right] \times \left[\left(D_{\nu} \Phi \right)^{\dagger} D^{\nu} \Phi \right]$

	WWWW	WWZZ	ZZZZ	WWAZ	WWAA	ZZZA	ZZAA	ZAAA	AAAA]
$\mathcal{L}_{S,0},\mathcal{L}_{S,1}$	Х	Х	Х	0	0	0	0	0	0]
$\mathcal{L}_{M,0}, \mathcal{L}_{M,1}, \mathcal{L}_{M,6}, \mathcal{L}_{M,7}$	Х	Х	Х	Х	Х	Х	Х	0	0]
$\mathcal{L}_{M,2}$, $\mathcal{L}_{M,3}$, $\mathcal{L}_{M,4}$, $\mathcal{L}_{M,5}$	0	Х	X	Х	Х	Х	Х	0	0	1
$\mathcal{L}_{T,0}$, $\mathcal{L}_{T,1}$, $\mathcal{L}_{T,2}$	Х	Х	Х	Х	Х	Х	Х	Х	Х	
$\mathcal{L}_{T,5}$, $\mathcal{L}_{T,6}$, $\mathcal{L}_{T,7}$	0	Х	Х	Х	Х	Х	Х	Х	Х]
$\mathcal{L}_{T,9}$, $\mathcal{L}_{T,9}$	0	0	Х	0	0	Х	Х	Х	Х	1 6

$Dim6 \leftrightarrow Dim8$

MG/ME FeynRules

$$\begin{vmatrix} \frac{a_0^W}{\Lambda^2} \\ \frac{a_0^W}{\Lambda^2} \end{vmatrix} = - \frac{4M_W^2}{g^2} \frac{f_{M,0}}{\Lambda'^4} - \frac{8M_W^2}{g'^2} \frac{f_{M,2}}{\Lambda'^4}, \\ \frac{a_C^W}{\Lambda^2} \\ \frac{a_C^W}{\Lambda^2} \end{vmatrix} = \frac{4M_W^2}{g^2} \frac{f_{M,1}}{\Lambda'^4} + \frac{8M_W^2}{g'^2} \frac{f_{M,3}}{\Lambda'^4}.$$

Eg.

$$\mathcal{L}_{aQGC} = \frac{a_0^W}{4g^2} \mathcal{W}_0^{\gamma} + \frac{a_C^W}{4g^2} \mathcal{W}_c^{\gamma} + \sum_i \kappa_i^W \mathcal{W}_i^Z + \mathcal{L}_{T,0} + \mathcal{L}_{T,1} + \mathcal{L}_{T,2}.$$

 CLs and profile likelihood methods used to set the upper limit

aQGC implemented in aMC@NLO http://hepfarm02.phy.pku.edu.cn/foswiki/CMS/AQGCs

Unitarity can be checked with VBFNLO https://www.itp.kit.edu/~vbfnloweb/wiki/doku.php?id=overview

• ATLAS and CMS Results

JHEP 1307 (2013) 116

50

100

150

Cross checked within μμ and τ τ , and also extra track control regions

signal exp.	background exp.	data
2.2 ± 0.5	0.84 ± 0.13(stat.)	2

<mark>~1</mark>σ

250

p_{_}(eµ) [GeV]

300

200

$$\sigma(pp \rightarrow p^{(*)}W^+W^-p^{(*)} \rightarrow p^{(*)}\mu^{\pm}e^{\mp}p^{(*)}) = 2.2^{+3.3}_{-2.0} \,\text{fb}$$

7 TeV CMS

Use $P_T^{(e\mu)}$ tail (>100GeV) to set limit on Dim-6 aQGC

$$\begin{split} &-0.00015 < a_0^W / \Lambda^2 < 0.00015 \,\text{GeV}^{-2} \, \left(a_C^W / \Lambda^2 = 0, \Lambda_{\text{cutoff}} = 500 \,\text{GeV} \right), \\ &-0.0005 < a_C^W / \Lambda^2 < 0.0005 \,\text{GeV}^{-2} \, \left(a_0^W / \Lambda^2 = 0, \Lambda_{\text{cutoff}} = 500 \,\text{GeV} \right). \\ &-4.0 \times 10^{-6} < a_0^W / \Lambda^2 < 4.0 \times 10^{-6} \,\text{GeV}^{-2} \, \left(a_C^W / \Lambda^2 = 0, \text{no form factor} \right), \\ &-1.5 \times 10^{-5} < a_C^W / \Lambda^2 < 1.5 \times 10^{-5} \,\text{GeV}^{-2} \, \left(a_0^W / \Lambda^2 = 0, \text{no form factor} \right). \end{split}$$

approximately two orders of magnitude more restrictive than limits obtained at the Tevatron without form factors

TeV CMS WWγ+WZγ →lvjjγ

q

CMS-PAS-SMP-13-009; arXiv:1404.4619

Events selections:

① Exactly one isolated lepton:

Single Lepton trigger &

 $(P_T^e > 35 GeV \& |\eta^e| < 2.5) ||$

 $(P_T^{\mu}>25GeV \& |\eta^{\mu}|<2.1)$

② Two PF AK5 Jets with b veto:

 $P_T^j > 30 \text{GeV \& } |\eta^j| < 2.4$

- ③ MET>35 GeV
- ④ Δφ(MET,J1)>0.4, R_{jγ}>0.5, R_{lγ}>0.5
- ⑤ M_T^w>30 GeV
- ⑥ |Μ_{γe}-M_z|>10GeV
- ⑦ |Δη_{jj}|<1.4, 70GeV<M_{jj}<110GeV
 - Main Backgrounds from Data-Driven:
 - Wy+Jets: sideband
 - Fake Photon: ratio method

σ(WV γ)< 241fb, 3.4 times SM (70.3fb) E_T^γ >15GeV

<mark>8 τeV CMS</mark> WWγ+WZγ →Iνjjγ

$E_t{}^\gamma$ used to set limits on aQGC, binned over 30-450GeV. The last bin includes the overflow.

NLO K factors evaluated with aMC@NLO

Find that the unitarity condition cannot be generally satisfied with a dipole form factor; More complex form factor is possible. **Choice is made to set limits without using a form factor.**

Expected Limits with a Form Factor

Unitarity bound calculated using Eq. 17 of Ref. arXiv: hep-ph/0009262

$$\frac{1}{N} \left(\frac{\alpha as}{16}\right)^2 \left(1 - \frac{4M_W^2}{s}\right)^{1/2} \left(3 - \frac{s}{M_W^2} + \frac{s^2}{4M_W^4}\right) \le 1 \text{ for } V = W$$
where $a = a_0/\Lambda^2$ or a_C/Λ^2 and $N = 1/4$ (4) for a_0/Λ^2 (a_C/Λ^2)
$$(4 - \frac{4M_W^2}{s})^{1/2} \left(1 - \frac{4M_W^2}{s}\right)^{1/2} \left(1 - \frac{4M_W^2}{s}\right)^{$$

<mark>8 τeV CMS</mark> WWγ+WZγ →Iνjjγ

$$\begin{split} \mathcal{L}_{\text{AQGC}} &= -\frac{e^2}{8} \frac{a_0^{\text{W}}}{\Lambda^2} F_{\mu\nu} F^{\mu\nu} W^{+\alpha} W_{\alpha}^{-} - \frac{e^2}{16} \frac{a_{\text{C}}^{\text{W}}}{\Lambda^2} F_{\mu\nu} F^{\mu\alpha} (W^{+\nu} W_{\alpha}^{-} + W^{-\nu} W_{\alpha}^{+}) \\ &- e^2 g^2 \frac{\kappa_0^{\text{W}}}{\Lambda^2} F_{\mu\nu} Z^{\mu\nu} W^{+\alpha} W_{\alpha}^{-} - \frac{e^2 g^2}{2} \frac{\kappa_{\text{C}}^{\text{W}}}{\Lambda^2} F_{\mu\nu} Z^{\mu\alpha} (W^{+\nu} W_{\alpha}^{-} + W^{-\nu} W_{\alpha}^{+}) \\ &+ \frac{f_{T,0}}{\Lambda^4} \operatorname{Tr}[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu}] \times \operatorname{Tr}[\hat{W}_{\alpha\beta} \hat{W}^{\alpha\beta}]. \end{split}$$

Observed limits	Expected limits
$-21 < a_0^W / \Lambda^2 < 20 { m TeV^{-2}}$	$-24 < a_0^{ m W}$ / $\Lambda^2 < 23{ m TeV^{-2}}$
$-34 < a_{C}^{W} / \Lambda^{2} < 32 \text{TeV}^{-2}$	$-37 < a_C^{W} / \Lambda^2 < 34 \text{TeV}^{-2}$
$-25 < f_{T,0}/\Lambda^4 < 24{ m TeV^{-4}}$	$-27 < f_{T,0}/\Lambda^4 < 27 { m TeV^{-4}}$
$-12 < \kappa_0^W / \Lambda^2 < 10 { m TeV^{-2}}$	$-12 < \kappa_0^W / \Lambda^2 < 12 \text{TeV}^{-2}$
$-18 < \kappa_C^{ m W} / \Lambda^2 < 17 { m TeV^{-2}}$	$-19 < \kappa_{C}^{\bar{W}} / \Lambda^{2} < 18 { m TeV^{-2}}$

Observed limits (TeV ⁻⁴)	Expected limits (TeV ⁻⁴)
$-77 < f_{M,0} / \Lambda^4 < 81$	$-89 < f_{M,0} / \Lambda^4 < 93$
$-131 < f_{M,1} / \Lambda^4 < 123$	$-143 < f_{M,1}/\Lambda^4 < 131$
$-39 < f_{M,2}/\Lambda^4 < 40$	$-44 < f_{M,2}/\Lambda^4 < 46$
$-66 < f_{M,3} / \Lambda^4 < 62$	$-71 < f_{M,3}/\Lambda^4 < 66$

8 TeV ATLAS See more in Prof. Liu's Talk

ATLAS-CONF-2014-013

4.5σ

3.6σ

Data 2012

Prompt

5

Syst. Uncertainty

W[±]W[±]jj Strong

Conversions Other non-prompt

W[±]W[±]jj Electroweak

 $|\Delta y_{ii}|$ 27

9

8

8 TeV ATLAS Same Sign WW

	Ir	clusive Regio	on	VBS Region			
	$e^{\pm}e^{\pm}$	$e^{\pm}\mu^{\pm}$	$\mu^{\pm}\mu^{\pm}$	$e^{\pm}e^{\pm}$	$e^{\pm}\mu^{\pm}$	$\mu^{\pm}\mu^{\pm}$	
Prompt	3.0 ± 0.7	6.1 ± 1.3	2.6 ± 0.6	2.2 ± 0.5	4.2 ± 1.0	1.9 ± 0.5	
Conversions	3.2 ± 0.7	2.4 ± 0.8	_	2.1 ± 0.5	1.9 ± 0.7	_	
Other non-prompt	0.61 ± 0.30	1.9 ± 0.8	0.41 ± 0.22	0.50 ± 0.26	1.5 ± 0.6	0.34 ± 0.19	
W [±] W [±] j j Strong	0.89 ± 0.15	2.5 ± 0.4	1.42 ± 0.23	0.25 ± 0.06	0.71 ± 0.14	0.38 ± 0.08	
W [±] W [±] jj Electroweak	3.07 ± 0.30	9.0 ± 0.8	4.9 ± 0.5	2.55 ± 0.25	7.3 ± 0.6	$\textbf{4.0} \pm \textbf{0.4}$	
Total background	6.8 ± 1.2	10.3 ± 2.0	3.0 ± 0.6	5.0 ± 0.9	8.3 ± 1.6	2.6 ± 0.5	
Total signal	4.0 ± 0.4	11.4 ± 1.2	6.3 ± 0.7	2.55 ± 0.25	7.3 ± 0.6	$\textbf{4.0} \pm \textbf{0.4}$	
Total predicted	10.7 ± 1.4	21.7 ± 2.6	9.3 ± 1.0	7.6 ± 1.0	15.6 ± 2.0	6.6 ± 0.8	
Data	12	26	12	6	18	10	

WHIZARD event-generator

K-matrix unitarization method

$$\mathcal{L}_4 = \alpha_4 (\operatorname{tr} \left[\mathbf{V}_{\mu} \mathbf{V}_{\nu} \right])^2,$$

$$\mathcal{L}_5 = \alpha_5 (\operatorname{tr} \left[\mathbf{V}_{\mu} \mathbf{V}^{\mu} \right])^2.$$

In collaboration with Prof. DongHee Kim's team at KNU, Korea

Use Mjj, Zeppenfeld Variable $(|\eta_{WY}^{-}(\eta_{j1}+\eta_{j2})/2|)$ and $|\Delta \eta_{jj}|$ to discriminate signal from bkg

Tried also TMVA

Main Bkg: QCD W/ZA+Jets, Jet Fake photon, estimated from Data-Driven

Based on MC estimation, we anticipate to achieve one-order better limits on fM0-4, fT0,1,2,8,9 than CMS WVA 8TeV analysis

|pTj|>40GeV, |etaj|<4.7, |pTa|>20GeV,

|etaa|<2.4, DeltaR jj>0.5, Deltall>0.5,

DeltaR aj>0.5, DeltaEta jj>3.0,

Mjj>600GeV, |etal|<2.4, DeltaR jl>0.5,

Anomalous Quadruple Gauge Coupling

Significance	pta >100GeV	pta >120GeV
KOG = 0.5e-5	0.7sigma	0.7sigma
KOG = 0.8e-5	1.7sigma	2.0sigma
KOG = 1.0e-5	2.8sigma	2.8sigma
KOG = 1.2e-5	3.7sigma	4.1sigma
KOG = 1.5e-5	5.6sigma	6.5sigma

CMS-PAS-SMP-13-009 arXiv:1404.4619

 $-12 < \kappa_0^W / \Lambda^2 < 10 \, {\rm TeV^{-2}} - 12 < \kappa_0^W / \Lambda^2 < 12 \, {\rm TeV^{-2}}$

• MC Studies

 $WWY \rightarrow llvY$

JHEP 1304 (2013) 108 Daneng Yang, Qiang Li, et.al.

 Z/γ

Signal: Two OS leptons + One photon + MET $|m_{ll} - M_Z| > 10 \text{GeV}$ **Bkg**: Zy, TTbar+y, TWy, ZZy, WZy

Tool: MG/ME, Delphes v2 (**PU not included at that time**)

at 14 TeV LHC with an integrated luminosity of 100 (30) fb-1, one can reach a significance of 9 (5) to observe the SM W+W- production

Droocecce	Cross section	K-factor	Events				
FIOCesses	[fb]	[Ref.]	$(A^*) P_{Tj}^{U_P} = 60 \text{ GeV}$	$(B^*) \ P_{T \ \gamma}^{ cut} = 80 {\rm GeV}$	$(C^* \;)\; n_j = 0, 1, \; P_{Tj} > 25{\rm GeV}$		
$W^+W^-\gamma$	18.286	2.0 [41]	95.818	58.880	114.84		
I(F)SR WW	3114.1	1.5 [42]	35.812	4.6712	54.498		
$Z\gamma$	4107.2	1.5 [43]	61.608	47.232	57.501		
$ZZ\gamma$	45.818	1.3 [41]	0.2779	0.1985	0.2780		
$W^{\pm}Z\gamma$	1.3698	1.5 [44]	0.8903	0.5739	1.0068		
$t\bar{t}\gamma$	170.22	1.9 [45]	88.830	73.738	60.801		
$tW^{\pm}\gamma$	26.858	1.0 [42]	17.905	11.442	16.527		

JHEP 1304 (2013) 108 Daneng Yang, Qiang Li, et.al.

- (a) $P_{T\gamma} > 250 \text{ GeV}.$
- (b) The leading lepton $P_T > 200 \text{ GeV}$

can constrain at the 95% CL the anomalous WW coupling parameters, e.g., $a^w{}_{0,c}/\Lambda^2$ at 1 \times 10^{-5}GeV^2

w/o form factors

Comparing with Previous LEP and MC results

Couplings	OPAL Limit	$W\gamma\gamma$	W boson fusion	Photon exchange
$[\text{GeV}^{-2}]$		$100 \ {\rm fb}^{-1}$	$100 \ {\rm fb}^{-1}$	$30(200){\rm fb}^{-1}$
a_0^W/Λ^2	[-0.020, 0.020]	$[-7.6, 7.6] \times 10^{-5}$	1.4×10^{-5}	$0.26~(0.14) \times 10^{-5}$
a_c^W/Λ^2	[-0.052, 0.037]	$[-11, 10] \times 10^{-5}$	5.3×10^{-5}	$0.94~(0.52)~\times 10^{-5}$

See refs in JHEP 1304 (2013) 108

$WZ\gamma \rightarrow III\nu\gamma$

PRD88 (2013) 015023 Ke Ye, Daneng Yang, Q.Li

Signal	Three	leptons +	One	photon	+	MET
--------	-------	-----------	-----	--------	---	-----

Drogogggg	σ (LO)	K-factor	Events					
FIOCESSES	[fb]	[Ref.]	$(A^*) P_{T,\gamma}^{cut*} = 80 \text{ GeV}$	$(B^*) P_{T,j}^{veto*} = 80 \text{ GeV}$	$(C^*) \ n_j = 0, 1, \ P_{T,j}^{cut*} = 35 \ \text{GeV}$			
$W^{\pm}Z\gamma$	0.89	2.0 [44]	3.78	3.48	3.41			
I(F)SR WZ	349.4	1.8 [45]	0.76	0.50	0.44			
$ZZ\gamma$	0.24	1.4 [46]	0.19	0.18	0.17			
ZZ	99.4	1.6 [45]	0.16	0.16	0.16			
ZZZ	0.059	1.5 [47]	0.008	0.007	0.007			
WWW	1.72	1.8 [47]	0	0	0			
WWZ	0.96	1.9 [48]	0.085	0.079	0.073			
$t\bar{t}Z$	6.16	1.4 [49]	0.35	0.16	0.086			

Table 1. Cut flow at the LHC with $\sqrt{s} = 14$ TeV and integrated luminosity of $100 \, \text{fb}^{-1}$.

 $P_{T,\gamma} \ge 200 \text{ GeV}, \qquad P_{T,l} \ge 120 \text{ GeV}.$

parameter	95% confidence interval					
parameter	$W^{\pm}Z\gamma~(\times 10^{-5}{\rm GeV}^{-2})$	MC VBF [12] $(\times 10^{-5} \text{GeV}^{-2})$	MC at LEP2 [17] $(\times 10^{-2} \text{GeV}^{-2})$			
k_2^m/Λ^2	[-5.7, 5.5]	[-2.7, 2.7]	[-6.2, 6.4]			

1. <u>Pure leptonic $W^{\pm}W^{\pm}W^{\mp} \rightarrow 3l + MET$ </u> <u>Checked with Snomass</u>

2 categories: $e^{\pm}e^{\pm}\mu^{\mp}, \mu^{\pm}\mu^{\pm}e^{\mp};$ and others

Bkg: WZ,ttW,ZZ,ttZ,WWZ

14/100TeV LHC Delphes V3, PU added

cutbased or MVA

 $\mathcal{W}\mathcal{W}\mathcal{W}$

2. Same-sign dileptons + 2 jets: $W^{\pm}W^{\pm}W^{\mp} \rightarrow l^{\pm}l^{\pm}jj$ +MET First study

BKg: QCD/EWK same sign WW

14/100TeV LHC Delphes V3, PU added

cutbased or MVA

Delphes Card

WWW

In detector simulation, for 14 TeV, we use default CMS setup. As to 100 TeV, we use Snowmass setup.

Snowmass

- O PileUp Merger: Mean PileUp 140
- ② Electron efficiency: $P_T \le 10$ 0% in $|\eta| \le 1.5$, $P_T > 10$ 98% in $1.5 \le |\eta| \le 2.5$, $P_T > 10$ 90% in $|\eta| \ge 2.5$, $P_T > 10$ 0%
- 3 Muon efficiency: $P_T \le 10$ 0% in $|\eta| \le 1.5$, $P_T > 10$ 99% in $1.5 \le |\eta| \le 2.4$, $P_T > 10$ 97% in $|\eta| \ge 2.4$, $P_T > 10$ 0%
- **3 b-tagging**:efficiency formula as function of η and P_t

WWW

$\underline{W^{\pm}W^{\pm}W^{\mp}} \rightarrow 3l + \text{MET} \quad 14 \text{TeV LHC}$

		Events						
	XS[fb]		cut-based					
	V2[ID]	Pile	Pileup 0		Pileup 50		p 140	Pileup 0
		s1	s2	s1	s2	s1	s2	s1
WWW	2.1	20.9	6.2	19	5.8	17	5.1	20
WZ	411	421	6.8	428	6.7	397	6.5	337
tŦW	9.8	33	10.3	38	11	38	11	56
ZZ	272	40	1.0	98	1.6	106	2.7	32
tτΖ	6.3	10	2.7	12	3.4	13	3.6	18
WWZ	0.8	3.7	1.0	3.0	1.0	3.5	0.94	3.2
signific	cance	0.92	1.2	0.82	1.1	0.75	0.98	0.94

Table: Cut flow at the LHC with $\sqrt{s} = 14$ TeV and integrated luminosity of 100 fb⁻¹.

WWW

 $\underline{W^{\pm}W^{\pm}W^{\mp}} \rightarrow 3l + \text{MET} \quad 14 \text{TeV LHC}$

	WWW	VBF by Eboli [†]	Snowmass WWW^{\ddagger}
$\frac{f_{so}}{\Lambda^4}$ [GeV ⁻⁴]	$1.8 imes10^{-10}$	$2.4 imes 10^{-11}$	-
$\frac{f_{S1}}{\Lambda^4}$ [GeV ⁻⁴]	$2.7 imes10^{-10}$	$2.5 imes 10^{-11}$	-
$\frac{f_{T0}}{\Lambda^4}$ [GeV ⁻⁴]	$5.8 imes 10^{-13}$ §	-	$1.2 imes 10^{-12}$

Our results are presented at 95%CL with 100 fb⁻¹ $\$8 \times 10^{-13}$ in 5 σ with 100 fb⁻¹

- † arXiv:hep-ph/0606118 results are presented at 99% CL
- [‡] arXiv:1309.1475 results are at 5σ with 300 fb⁻¹

WWW

$W^{\pm}W^{\pm}W^{\mp} \rightarrow 3l$ +MET 100TeV LHC

		Events					
	VS[fb]	cut-based					
	Və[in]	Pileu	р 50	Pileup 140			
		s1	s2	s1	s2		
WWW	15.61	4758	1416	3855	1156		
WZ	2570	92185	1670	82060	1696		
tŦW	89.66	8607	2539	9930	3211		
ZZ	2674	26633	481	24226	1283		
tτΖ	453.6	15240	4408	18180	5034		
WWZ	14.13	1164	317	993	255		
significance		12.54	14.59	10.47	10.79		

Table: Cut flow at future p p collider with $\sqrt{s} = 100$ TeV and integrated luminosity of 3000 fb⁻¹.

		Pileup				0	50	140
Two	Two and only two same-sign leptons with $p_T \ge 20$ GeV, $ \eta \le 2.4$. No extra lepton with $p_T \ge 10$ GeV, $ \eta \le 2.4$							
	N _j (Number	of jet with p	$_T \geq 30 \text{ GeV}$	$ \eta \leq 5$		= 2	2∼3, (≥ 2*)	≥ 2
		$E_T^{ m miss}$					\geq 30GeV	
		$ m_{jj} - n$	n_W		<	≤ 15GeV	≤ 20 GeV	≤ 30 GeV
	$ m_{jj}-m_W $					≤ 15GeV	≤ 20GeV	≤ 30GeV
p_T^{j1}	p_T^{j2}	η^{j1}	η^{j2}	m^{j1}	<i>m^{j2}</i>	Nj	p_T^{l1}	E_T^{miss}
m_{jj}	ΔR_{jj}	$\Delta \phi_{jj}$	p_T^{ll}	ΔR_{ll}	$\Delta \phi_{ll}$	ΔR_{jl}^{min}	$\Delta \phi_{ll,E_T^{miss}}$	s $\Delta \phi_{l,E_T^{min}}^{min}$
	14TeV, 100fb ⁻¹				100TeV,	100fb ⁻¹		

	_				····	
Pileup	0	50	140	0	50	140
cut-based	1.7	1.2	0.9	3.8	2.0	1.2
BDT	1.8	1.4	1.3	4.4	3.0	2.6
	· · · - · · · ·			4		Δ
		$00fb^{-1}$	1.16 ToV^{-4}	4 < F <	1.26 ToV^{-1}	-4

VBF ZZ

 $\mathcal{L}_{\phi W} = \frac{c_{\phi W}}{\Lambda^2} \mathrm{Tr}(W^{\mu\nu} W_{\mu\nu}) \phi^{\dagger} \phi$

Parameter	Luminosity	14 7	ΓeV	$33 { m TeV}$	
1 arameter	$[fb^{-1}]$	5σ	95% CL	5σ	95% CL
$c_{\phi W}/\Lambda^2 ~[{\rm TeV^{-2}}]$	3000	16.2(16.2)	9.7(9.7)	13.2(13.2)	8.2(8.2)
	300	31.3(31.5)	18.2(18.3)	23.8(23.8)	14.7(14.7)
$f_{T8}/\Lambda^4 \; [{ m TeV^{-4}}]$	3000	2.9(4.7)	1.7(2.4)	1.6(1.7)	1.0(1.3)
	300	5.5(8.4)	3.2(5.3)	2.8(2.3)	1.8(1.8)
$f_{T9}/\Lambda^4 \; [{\rm TeV^{-4}}]$	3000	5.7(6.3)	3.9(4.6)	3.8(6.6)	2.5(3.5)
	300	8.7(9.0)	6.2(6.7)	6.3(10.1)	4.2(8.2)

VBF WZ

 $\mathcal{L}_{\phi d} = \frac{c_{\phi d}}{\Lambda^2} \partial_\mu (\phi^{\dagger} \phi) \partial^\mu (\phi^{\dagger} \phi)$

Parameter	Luminosity	14 7	TeV	$33 { m TeV}$	
1 arameter	$[fb^{-1}]$	5σ	$95\% \ \mathrm{CL}$	5σ	95% CL
$c_{\phi d}/\Lambda^2 \; [\text{TeV}^{-2}]$	3000	15.2(15.2)	9.1(9.1)	12.6(12.7)	7.7(7.7)
	300	28.5(28.7)	17.1 (17.1)	23.1(23.3)	14.1(14.2)
$f_{T1}/\Lambda^4 \; [{\rm TeV^{-4}}]$	3000	0.6(0.9)	0.4(0.5)	0.3(0.6)	0.2(0.3)
	300	1.1(1.6)	0.7(1.0)	0.6(0.9)	0.3 (0.6)

VBS $W^{\pm}W^{\pm} \rightarrow \ell \nu \ell \nu$

Parameter	\sqrt{s}	Luminosity	pileup	5σ	95% CL
	[TeV]	$[fb^{-1}]$		$[TeV^{-4}]$	$[TeV^{-4}]$
f_{T1}/Λ^4	14	300	50	0.2(0.4)	0.1(0.2)
f_{T1}/Λ^4	14	3000	140	0.1(0.2)	0.06(0.1)
f_{T1}/Λ^4	14	3000	0	0.1(0.2)	0.06(0.1)
f_{T1}/Λ^4	100	1000	40	0.001(0.001)	0.0004 (0.0004)
f_{T1}/Λ^4	100	3000	263	0.001(0.001)	$0.0008 \ (0.0008)$
f_{T1}/Λ^4	100	3000	0	$0.001\ (0.001)$	$0.0008 \ (0.0008)$

$$Z\gamma\gamma \to l^+ l^- \gamma\gamma$$

Parameter	\sqrt{s}	$14 { m TeV}$	$14 { m TeV}$	$33 { m TeV}$	$100 { m TeV}$
	Lum.	300 fb^{-1}		3000 fb^{-1}	
$f_{\rm Mo}/\Lambda^4$ [ToV-4]	5σ	7300(830)	3600(310)	1900 (190)	750(120)
JM0/M [lev]	95% CL	4200(360)	1200(160)	660(120)	71(59)
$f / \Lambda 4 [T_{\rm o}V - 4]$	5σ	7600(1600)	3600(680)	2100(340)	1000(220)
JM1/M [lev]	95% CL	4500(800)	1200(290)	770(160)	240(126)
$f_{M2}/\Lambda^4 \; [{\rm TeV^{-4}}]$	5σ	3300 (130)	510(48)	310(26)	120(16)
	95% CL	670(56)	160(21)	110 (13)	25(10)
$f_{M3}/\Lambda^4 \; [{\rm TeV^{-4}}]$	5σ	2400(250)	720 (120)	320(66)	180(34)
	95% CL	820 (133)	210(52)	130(23)	38(15)

• First measurement on aQGC at the LHC from 3 channels

First ever limits on **f**⁰_T, K₀^w, K_c^w, **4W coupling**

- Triple V and EWK VV+2Jets Processes will serve as further test on the SM, and will be much sensitive to aQGC
- TGC and QGC will enter precision measurement era!!
- At harder tail, we may explore aQGC with Jet subtructure (PKU Group contributed much on W-tagging and EXO VV resonance search at CMS, see more in Shuai Liu's talk)

HL-LHC (3000 fb⁻¹)

LHC 13-14 TeV (300 fb⁻¹)

2 2

LHC 7-8 TeV (30 fb⁻¹)

Samivel

