Super-Natural Supersymmetry

Tianjun Li

Institute of Theoretical Physics, Chinese Academy of Sciences

May 16, 2014

イロト イヨト イヨト イヨト

Outline

Introduction

The SUSY EW Fine-Tuning Problem

The MSSM with Heavy LSP

No-Scale \mathcal{F} -SU(5)

General Super-Natural Supersymmetry Conditions

Conclusion

∢ ≣⇒

The SUSY EW Fine-Tuning Problem The MSSM with Heavy LSP No-Scale \mathcal{F} -SU(5) General Super-Natural Supersymmetry Conditions Conclusion

Outline

Introduction

The SUSY EW Fine-Tuning Problem

The MSSM with Heavy LSP

No-Scale \mathcal{F} -SU(5)

General Super-Natural Supersymmetry Conditions

Conclusion

∢ ≣ ≯

The SUSY EW Fine-Tuning Problem The MSSM with Heavy LSP No-Scale \mathcal{F} -SU(5) General Super-Natural Supersymmetry Conditions Conclusion

Standard Model:

 Fine-tuning problems: cosmological constant problem; gauge hierarchy problem; strong CP problem; SM fermion masses and mixings; ...

Image: A matrix and a matrix

< ∃⇒

The SUSY EW Fine-Tuning Problem The MSSM with Heavy LSP No-Scale *F-SU*(5) General Super-Natural Supersymmetry Conditions Conclusion

Standard Model:

- Fine-tuning problems: cosmological constant problem; gauge hierarchy problem; strong CP problem; SM fermion masses and mixings; ...
- Aesthetic problems: interaction and fermion unification; gauge coupling unification; charge quantization; too many parameters; ...

The SUSY EW Fine-Tuning Problem The MSSM with Heavy LSP No-Scale *F-SU*(5) General Super-Natural Supersymmetry Conditions Conclusion

The Supersymmetric Standard Models:

- Solving the gauge hierarchy problem
- Gauge coupling unification
- Radiatively electroweak symmetry breaking
- Natural dark matter candidates
- Electroweak baryogenesis
- Electroweak precision: R parity

The SUSY EW Fine-Tuning Problem The MSSM with Heavy LSP No-Scale \mathcal{F} -SU(5) General Super-Natural Supersymmetry Conditions Conclusion

Problems in the MSSM:

- μ problem: $\mu H_u H_d$
- Little hierarchy problem
- CP violation and EDMs
- ► FCNC
- Dimension-5 proton decays

< ≣ >

The Grand Unified Theories: SU(5), and SO(10)

- Unification of the gauge interactions, and unifications of the SM fermions
- Charge quantization
- Gauge coupling unification in the MSSM, and Yukawa unification
- Radiative electroweak symmetry breaking due to the large top quark Yukawa coupling
- Weak mixing angle at weak scale M_Z
- Neutrino masses and mixings by seesaw mechanism

The SUSY EW Fine-Tuning Problem The MSSM with Heavy LSP No-Scale \mathcal{F} -SU(5) General Super-Natural Supersymmetry Conditions Conclusion

Problems:

- Gauge symmetry breaking
- Doublet-triplet splitting problem
- Proton decay problem
- Fermion mass problem: $m_e/m_\mu = m_d/m_s$

Image: A math a math

∢ ≣⇒

String Models:

- Calabi-Yau compactification of heterotic string theory
- Orbifold compactification of heterotic string theory
 Grand Unified Theory (GUT) can be realized naturally through the elegant E₈ breaking chain:

 $\textit{E}_8 \supset \textit{E}_6 \supset \textit{SO}(10) \supset \textit{SU}(5)$

D-brane models on Type II orientifolds

N stacks of D-branes gives us U(N) gauge symmetry: Pati-Salam Models

Free fermionic string model builing

Realistic models with clean particle spectra can only be constructed at the Kac-Moody level one: the Standard-like models, Pati-Salam models, and flipped SU(5) models.

<ロ> <同> <同> <同> < 同> < 同>

F-Theory Model Building:

- ► The models are constructed locally, and then the gravity should decoupled, *i.e.*, $M_{\rm GUT}/M_{\rm Pl}$ is a small number.
- ► The SU(5) and SO(10) gauge symmetries can be broken by the $U(1)_Y$ and $U(1)_X/U(1)_{B-L}$ fluxes.
- Gauge mediated supersymmetry breaking can be realized via instanton effects. Gravity mediated supersymmetry breaking predicts the gaugino mass relation.
- ► All the SM fermion Yuakwa couplings can be generated in the SU(5) and SO(10) models.
- The doublet-triplet splitting problem, proton decay problem, µ problem as well as the SM fermion masses and mixing problem can be solved.

Outline

Introduction

The SUSY EW Fine-Tuning Problem

The MSSM with Heavy LSP

No-Scale \mathcal{F} -SU(5)

General Super-Natural Supersymmetry Conditions

Conclusion

< ≣ >

Higgs boson mass in the MSSM:

- ► The SM-like Higgs boson mass is around 126 GeV.
- The tree-level Higgs boson mass is smaller than M_Z .
- The Higgs boson mass is enhanced by the top quarks/squarks loop corrections.
- The maximal stop mixing is needed to relax the fine-tuning.

The LHC Supersymmetry Search Contraints:

- The gluino and squark mass low bounds are around 1.7 TeV in the CMSSM/mSUGRA
- The gluino mass low bound is around 1.3 TeV.
- ► The stop/sbottom mass low bounds are around 600 GeV.
- ► If the LSP is heavy enough, all the bounds will be gone.

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: Moriond 2014

ATLAS Preliminary $\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1}$ $\sqrt{s} = 7, 8 \text{ TeV}$

æ

3 E 7

	Model	e, μ, τ, γ	Jets	E_{T}^{miss}	∫£ dt[ft	Mass limit	F	Reference
Inclusive Searches	$ \begin{split} & \text{MSUGRACMSSM} \\ & MSUG$	$\begin{smallmatrix}&&0\\&1e,\mu\\&&0\\&&0\\&1e,\mu\\&2e,\mu\\&2e,\mu\\&1,2\tau\\&2\gamma\\&1e,\mu+\gamma\\&\gamma\\&2e,\mu(Z)\\&0\end{smallmatrix}$	2-6 jets 3-6 jets 2-6 jets 2-6 jets 3-6 jets 0-3 jets - 1 b 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 4.7 20.7 20.7 20.7 20.3 4.8 4.8 5.8 10.5	41 12 Total 12	π(2) ΑΤ (3) Δ47 ΑΤ (4) Δ47 ΑΤ (5) Δ47 ΑΤ (5) Δ47 ΑΤ (5) Δ50 Δ48/ π(1 ²⁺)+Δ5(π(1 ²), μπ(2)) ΑΤ 15 15 15 15 15 15 15 15 250 Δ47 ΑΤ 15 250 Δ47 ΑΤ 15 250 Δ47 ΑΤ 250 Δ47 ΑΤ 250 Δ47 ΑΤ 250 Δ47 ΑΤ 15 15 15 15 15 15 15 15 15 15	LAS-CONF-2013-047 LAS-CONF-2013-047 1308.1841 LAS-CONF-2013-047 LAS-CONF-2013-047 LAS-CONF-2013-049 1208.4688 LAS-CONF-2013-029 LAS-CONF-2013-029 LAS-CONF-2012-147 LAS-CONF-2012-147 LAS-CONF-2012-147
3 rd gen. § med.	$s \rightarrow bb \tilde{s}^0_1$ $s \rightarrow b \tilde{s}^0_1$ $s \rightarrow b \tilde{s}^0_1$ $s \rightarrow b \tilde{s}^0_1$	0 0 0-1 e, µ 0-1 e, µ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes	20.1 20.3 20.1 20.1	8 1.2 TeV m(T) 8 1.1 TeV m(T) 8 1.3 TeV m(T) 8 1.34 TeV m(T) 8 1.3 TeV m(T)	CBD0 GeV AT <350 GeV AT <400 GeV AT <300 GeV AT	LAS-CONF-2013-061 1308.1841 LAS-CONF-2013-061 LAS-CONF-2013-061
3 rd gen. squarks direct production	$ \begin{split} \tilde{b}_{1} \tilde{b}_{1} - \tilde{b}_{2} \rightarrow b \tilde{b}_{1}^{(2)} \\ \tilde{b}_{1} \tilde{b}_{1} - \tilde{b}_{2} \rightarrow b \tilde{c}_{1}^{(2)} \\ \tilde{b}_{1} \tilde{b}_{1} - \tilde{b}_{2} \rightarrow b \tilde{c}_{1}^{(2)} \\ \tilde{f}_{1} \tilde{f}_{1} (\text{ligg(tr)}, \tilde{f}_{1} \rightarrow b \tilde{k}_{1}^{(2)} \\ \tilde{f}_{1} \tilde{f}_{1} (\text{ligg(tr)}) - b \tilde{k}_{1} + b \tilde{k}_{1}^{(2)} \\ \tilde{f}_{1} \tilde{f}_{1} (\text{ligg(tr)}) - \tilde{f}_{1} \rightarrow b \tilde{k}_{1}^{(2)} \\ \tilde{f}_{1} \tilde{f}_{1} (\text{ligg(tr)}) - \tilde{f}_{1} \rightarrow b \tilde{k}_{1}^{(2)} \\ \tilde{f}_{1} \tilde{f}_{1} (\text{ligg(tr)}) - \tilde{f}_{1} \rightarrow b \tilde{k}_{1}^{(2)} \\ \tilde{f}_{1} \tilde{f}_{1} (\text{ligg(tr)}) - \tilde{f}_{1} \rightarrow b \tilde{k}_{1}^{(2)} \\ \tilde{f}_{1} \tilde{f}_{1} - b \tilde{k}_{1}^{(2)} \\ \tilde{f}_{1} \tilde{f}_{1} \rightarrow b \tilde{k}_{1}^{(2)} \\ \tilde{f}_{1} \tilde{f}_{1} \rightarrow b \tilde{k}_{1}^{(2)} \\ \tilde{f}_{2} \tilde{f}_{1} \tilde{f}_{2} \rightarrow b \tilde{k}_{1}^{(2)} \\ \tilde{f}_{2} \tilde{f}_{1} \tilde{f}_{2} \rightarrow b \tilde{k}_{1}^{(2)} \\ \tilde{f}_{2} \tilde{f}_{1} \tilde{f}_{2} \rightarrow b \tilde{k}_{1}^{(2)} \\ \tilde{f}_{2} \tilde{f}_{2} = \tilde{f}_{2} \rightarrow b \tilde{k}_{1}^{(2)} \\ \tilde{f}_{2} \tilde{f}_{1} \tilde{f}_{1} \rightarrow b \tilde{k}_{1}^{(2)} \\ \tilde{f}_{2} \tilde{f}_{1} \tilde{f}_{1} \rightarrow b \tilde{k}_{1}^{(2)} \\ \tilde{f}_{2} \tilde{f}_{1} \tilde{f}_{1} \rightarrow b \tilde{k}_{1}^{(2)} \\ \tilde{f}_{1} \tilde{f}_{1} \tilde{f}_{1} \rightarrow b \tilde{k}_{1}^{(2)} \\ \tilde{f}_{2} \tilde{f}_{1} \tilde{f}_{1} \rightarrow b \tilde{k}_{1}^{(2)} \\ \tilde{f}_{2} \tilde{f}_{1} \tilde{f}_{1} \rightarrow b \tilde{k}_{1}^{(2)} \\ \tilde{f}_{1} \rightarrow b \tilde{k}_{1}^{(2)} \\ \tilde{f}_$	0 $2 e, \mu$ (SS) $1.2 e, \mu$ $2 e, \mu$ 0 $1 e, \mu$ 0 $1 e, \mu$ 0 $2 e, \mu$ (Z) $3 e, \mu$ (Z)	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b nono-jet/c-1 1 b 1 b	Yas Yas Yas Yas Yas Yas Yas Yas Yas Yas	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.3 20.3 20.3 20.3	j. 196 450 GeV 4100 11082 000 7758300 GeV 400 1082 000 7155300 GeV 400 1082 000 159300 GeV 400 1000 000 159300 GeV 400	300 GaV 42 可(行) 42 可(行) 42 可(行) 42 可(行) 40 (元(行) 40 (元) 40 (元(行) 40 (元) 40 (-元) 40 (元) 40 (元) 40 (元) 40 (元) 40 (-	1308.2631 LAS-CONF-2013-007 208.405, 1209.2102 1402.4653 1403.4653 1308.2631 LAS-CONF-2013-027 LAS-CONF-2013-027 LAS-CONF-2013-058 1403.5222
EW direct	$\begin{array}{c} \tilde{\ell}_{LB} \tilde{\ell}_{LR}, \tilde{\ell} \rightarrow \ell \tilde{\ell}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu (\tilde{r}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{-} \rightarrow \tilde{\ell} \nu (\tilde{r}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\chi}_{L}^{+} (\tilde{\ell} \nu), \tilde{\ell} \tilde{\tau}_{L} \ell (\tilde{r} \nu) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \tilde{W}_{1}^{+} \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \tilde{W}_{1}^{+} \ell \tilde{\chi}_{1}^{0} \end{array}$	2 ε,μ 2 ε,μ 2 τ 3 ε,μ 2 ·3 ε,μ 1 ε,μ	0 0 - 0 2 b	Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.3 20.3 20.3	2 1 1 1 1 1 1 1 1 1 1 1 1 1	$\label{eq:states} \begin{array}{l} {}_{s0} GeV \\ {}_{s0} GeV, m(\ell, t) {}_{s0} G(m(\ell_1^+) {}_{sm}(\ell_1^0)) \\ {}_{s0} GeV, m(\ell, t) {}_{s0} G(m(\ell_1^+) {}_{sm}(\ell_1^0)) \\ {}_{s0} GeV, m(\ell, t) {}_{s0} G(m(\ell_1^+) {}_{sm}(\ell_1^0)) \\ {}_{sm} (\ell_1^+) {}_{sm} (\ell_1^+) {}_{sm} G(s) \ sleptons decoupled \\ {}_{sm} m(\ell_1^+) {}_{sm} (\ell_1^+) {}_{sm} G(s) \ sleptons decoupled \\ AT \end{array}$	1403.5294 1403.5294 LAS-CONF-2013-028 1402.7029 403.5294, 1402.7029 LAS-CONF-2013-093
Long-lived particles	Direct $\tilde{x}_{1}^{\dagger}\tilde{x}_{1}^{-}$ prod., long-lived \tilde{x}_{1}^{\dagger} Stable, stopped \tilde{x} R-hadron GMSB, stable $\tilde{\tau}, \tilde{x}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{\tau}, \tilde{\mu}) + \tau(\epsilon, GMSB, \tilde{x}_{1}^{0} \rightarrow \gamma G, long-lived \tilde{x}_{1}^{0}\tilde{q}\tilde{q}, \tilde{x}_{1}^{0} \rightarrow q \mu (RPV)$	Disapp. trk 0 .,µ) 1-2,µ 2,γ 1,µ, displ. vtb	1 jet 1-5 jets - -	Yes Yes Yes	20.3 22.9 15.9 4.7 20.3	1 270 GeV m(i) 8 832 GeV m(i) 1 475 GeV 10ds 1 230 GeV 64cs 4 1.0 TeV 15 de	$\begin{array}{llllllllllllllllllllllllllllllllllll$	LAS-CONF-2013-059 LAS-CONF-2013-057 LAS-CONF-2013-058 1304.6310 LAS-CONF-2013-092
ЧН	$ \begin{array}{l} LFV pp \rightarrow \tilde{v}_{\tau} + \tilde{X}, \tilde{v}_{\tau} \rightarrow e + \mu \\ LFV pp \rightarrow \tilde{v}_{\tau} + \tilde{X}, \tilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ Binoar RPV CMSSM \\ \tilde{X}_1^{\dagger} \tilde{X}_1^{\dagger}, \tilde{X}_1^{\dagger} \rightarrow W \tilde{X}_1^{\dagger} \tilde{X}_1^{\dagger} \rightarrow e \tilde{v}_{\mu}, \tilde{x}_{\mu}^{\dagger} \tilde{X}_{\tau}^{\dagger}, \tilde{X}_{\tau}^{\dagger} \rightarrow W \tilde{X}_1^{\dagger} \tilde{X}_1^{\dagger} \rightarrow e \tilde{v}_{\tau}, \\ \tilde{X}_1^{\dagger} \tilde{X}_1^{\dagger}, \tilde{X}_1^{\dagger} \rightarrow W \tilde{X}_1^{\dagger} \tilde{X}_1^{\dagger} \rightarrow e \tilde{v}_{\tau}, \\ \tilde{X}_2^{\dagger} \tilde{X}_1^{\dagger}, \tilde{X}_1^{\dagger} \rightarrow W \tilde{X}_1^{\dagger} \tilde{X}_1^{\dagger} \rightarrow e \tilde{v}_{\tau}, \\ \tilde{X}_2^{\dagger} \tilde{X}_1, \tilde{X}_1^{\dagger} \rightarrow W \tilde{X}_1^{\dagger}, \\ \tilde{X}_2^{\dagger} \rightarrow e \tilde{v}_{\tau}, \\ \tilde{X}_1, \tilde{x}_1^{\dagger} \rightarrow b x \end{array} $	$2 e, \mu$ $1 e, \mu + \tau$ $1 e, \mu$ $4 e, \mu$ $3 e, \mu + \tau$ 0 $2 e, \mu$ (SS)	7 jets 7 jets 6-7 jets 0-3 b	Yas Yas Yas Yas	4.6 4.6 4.7 20.7 20.7 20.3 20.7	1 1.58 TaV 4 5 1.1 TaV 4 4 2 1.2 TaV 4 4 2 2.00 GeV 1.2 TaV 40 41 350 GeV 700 GeV 40 40 5 350 GeV 900 GeV 90 90	1.10, Ann 40.05 1.10, Ann 40.05 m(8), cr ₂₁₀₇ -1 mm AT 200 GeV, A ₁₁₁ >0 AT 200 GeV, A ₁₁₁ >0 AT 200 GeV, A ₁₁₁ >0 AT AT	1212.1272 1212.1272 LAS-CONF-2012-140 LAS-CONF-2013-035 LAS-CONF-2013-035 LAS-CONF-2013-031 LAS-CONF-2013-007
Other	Scalar gluon pair, sgluon →gÿ Scalar gluon pair, sgluon →ti WIMP interaction (DS, Dirac χ) VI = 7 TeV full data	$2 e, \mu (SS)$ $\sqrt{s} = 8 \text{ TeV}$ partial data	4 jets 2 b mono-jet √s = full	Yes Yes 8 TeV data	4.6 14.3 10.5	sphon 100-287 GeV ind. is Millionia 705 GeV m(x) 10 ⁻¹ 1	nit from 1110.2023 80 GeV, limit of-5687 GeV for D8 Mass scale [TeV]	1210.4826 LAS-CONF-2013-051 LAS-CONF-2012-147

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 or theoretical signal cross section uncertainty.

Tianjun Li

ITP-CAS

Tianjun Li ITP-CAS

イロン イヨン イヨン イヨン

Tianjun Li ITP-CAS

イロン イヨン イヨン イヨン

Э

Tianjun Li ITP-CAS

イロト イヨト イヨト イヨト

Fine-Tuning Definition I:

Electroweak symmetry breaking condition

$$\mu^2 + \frac{1}{2}M_Z^2 = \frac{\overline{m}_{\mathcal{H}_d}^2 - \overline{m}_{\mathcal{H}_u}^2 \tan^2\beta}{\tan^2\beta - 1}$$

Fine-tuning Definition I¹: the quantitative measure Δ_{FT} for fine-tuning is the maximum of the logarithmic derivative of M_Z with respect to all the fundamental parameters a_i at the GUT scale

$$\Delta_{\mathrm{FT}} = \mathrm{Max}\{\Delta_i^{\mathrm{GUT}}\}, \quad \Delta_i^{\mathrm{GUT}} = \left|\frac{\partial \mathrm{ln}(M_Z)}{\partial \mathrm{ln}(a_i^{\mathrm{GUT}})}\right|$$

Fine-Tuning Definition II

Higgs potential:

$$V = \overline{m}_h^2 |h|^2 + rac{\lambda_h}{4} |h|^4$$
 .

Higgs boson mass

$$m_h^2 = -2\overline{m}_h^2 \;, \;\; \overline{m}_h^2 \;\; \simeq \;\; |\mu|^2 + m_{H_u}^2|_{
m tree} + m_{H_u}^2|_{
m rad} \;.$$

► The fine-tuning measure ²:

$$\Delta_{
m FT} \equiv rac{2 \delta \overline{m}_h^2}{m_h^2} \; .$$

Fine-Tuning Definition II

- The μ term or effective μ term is smaller than 400 GeV.
- ► The squar root $M_{\tilde{t}} \equiv \sqrt{m_{\tilde{t}_1}^2 + m_{\tilde{t}_2}^2}$ of the sum of the two stop mass squares is smaller than 1.2 TeV.
- ► The gluino mass is lighter than 1.5 TeV.

Fine-Tuning Definition III

 The minimization condition for electroweak symmetry breaking

$$rac{M_Z^2}{2} = rac{m_{H_d}^2 + \Sigma_d^d - (m_{H_u}^2 + \Sigma_u^u) \tan^2eta}{ an^2eta - 1} - \mu^2 \; .$$

The fine-tuning measure ³

$$\Delta_{\rm FT} \equiv {
m Max}\{rac{2C_i}{M_Z^2}\} \; .$$

³H. Baer, V. Barger, P. Huang, D. Mickelson, A. Mustafayev and X. Tata, Phys. Rev. D **87**, no. 11, 115028 (2013) [arXiv:1212.2655 [hep-ph]].

Comments on Fine-Tuning

- Fine-Tuning Definition III is weak.
- ► Fine-Tuning Definition II is medium.
- Fine-Tuning Definition I is strong.

∢ ≣⇒

Supersymmetric SMs:

- Natural supersymmetry ⁴.
- Supersymmetric models with a TeV-scale squarks that can escape/relax the missing energy constraints: R parity violation ⁵; compressed supersymmetry ⁶; stealth supersymmetry ⁷; etc.

⁴S. Dimopoulos and G. F. Giudice, Phys. Lett. B **357**, 573 (1995) [hep-ph/9507282]; A. G. Cohen, D. B. Kaplan and A. E. Nelson, Phys. Lett. B **388**, 588 (1996) [hep-ph/9607394].

⁵R. Barbier, C. Berat, M. Besancon, M. Chemtob, A. Deandrea, E. Dudas, P. Fayet and S. Lavignac *et al.*, Phys. Rept. **420**, 1 (2005) [hep-ph/0406039].

⁶T. J. LeCompte and S. P. Martin, Phys. Rev. D 84, 015004 (2011) [arXiv:1105.4304 [hep-ph]]; Phys. Rev. D 85, 035023 (2012) [arXiv:1111.6897 [hep-ph]].

Supersymmetric SMs:

- Supersymmetric models with sub-TeV squarks that decrease the cross sections: supersoft supersymmetry ⁸.
- Displaced Supersymmetry ⁹.
- Double Invisible Supersymmetry ¹⁰.

⁸G. D. Kribs and A. Martin, arXiv:1203.4821 [hep-ph], and references therein.

⁹P. W. Graham, D. E. Kaplan, S. Rajendran and P. Saraswat, JHEP **1207**, 149 (2012) [arXiv:1204.6038 [hep-ph]].

¹⁰ J. Guo, Z. Kang, J. Li, T. Li and Y. Liu, arXiv:1312.2821 [hep-ph]; D. S. M. Alves, J. Liu and N. Weiner, arXiv:1312.4965 [hep-ph].

Outline

Introduction

The SUSY EW Fine-Tuning Problem

The MSSM with Heavy LSP

No-Scale \mathcal{F} -SU(5)

General Super-Natural Supersymmetry Conditions

Conclusion

< ≣ >

Why the LHC supersymmetry search constraints can be relaxed for the heavy LSP?

 $\triangleright p_T^{\text{miss}}$

• The energy scale of an event: h_T

$$h_{\mathcal{T}} = \sum_{i=1}^{N_{jet}} p^i_{\mathcal{T}} \; .$$

The effective mass of an event: m_{eff}

Figure : The behaviour of p_T^{miss} , h_T and m_{eff} for $\tilde{q}\tilde{\bar{q}}$ and \tilde{g} pair production, with subsequent decay $\tilde{q} \rightarrow q\tilde{\chi}$ and $\tilde{g} \rightarrow qq\tilde{\chi}$, respectively. Left: $m_{\tilde{q}/\tilde{g}} = 800 \text{ GeV}$ and scan over $m_{\tilde{\chi}}$ in [0,700] GeV. Right: $m_{\tilde{\chi}} = 300 \text{ GeV}$ and scan over $m_{\tilde{q}/\tilde{g}}$ in [400,1000] GeV. The black dots are simulated number and fitted by corresponding color line.

イロト イヨト イヨト イヨト

Parameter space scan

• The muon anomalous magnetic moment $a_{\mu} = (g-2)/2$

$$a_{\mu} ~~=~~(28.7\pm8) imes10^{-10}$$

Higgs boson mass

123.0 GeV
$$\leq m_h \leq$$
 127.0 GeV .

LHCb

$${\sf Br}(B_s o \mu^+ \mu^-) = 3.2^{+1.5}_{-1.2} imes 10^{-9}$$
 .

イロト イヨト イヨト イヨト

Input parameters

 $\begin{array}{ll} \tan\beta:[15,40], \quad \mu:[500,1000] \; \mathrm{GeV}, \quad M_A:[200,2500] \; \mathrm{GeV}, \\ \bar{M}_1:[1200,2500] \; \mathrm{GeV}, \quad \bar{M}_2:[600,1200] \; \mathrm{GeV}, \quad \bar{M}_3:[330,600] \; \mathrm{GeV}, \\ \bar{A}_t:[-2500,2500] \; \mathrm{GeV}, \quad \bar{m}_{L_{2,3}}:[400,1000] \; \mathrm{GeV}, \quad \bar{m}_{e_{2,3}}:[400,1000] \; \mathrm{GeV}, \\ \bar{m}_{Q_3}:[200,1400] \; \mathrm{GeV}, \quad \bar{m}_{U_3}:[200,1700] \; \mathrm{GeV}, \quad \bar{m}_{D_3}:[100,1900] \; \mathrm{GeV}, \\ \bar{A}_b:[-2000,2000] \; \mathrm{GeV}, \quad \bar{A}_I=0 \; \mathrm{GeV}, \quad \bar{m}_{Q_2,U_2,D_2}:[1500,3000] \; \mathrm{GeV} \; . \end{array}$

イロン イ部ン イヨン イヨン 三日

・ロン ・回 と ・ ヨン ・ ヨン

・ロン ・四と ・ヨン ・ヨン

・ロン ・回 と ・ ヨン ・ ヨン

$\widetilde{\chi}_1^0$	629.2	$\tilde{\chi}_1^{\pm}$	630.2	$\tilde{e}_R/\tilde{\mu}_R$	929.2	\widetilde{t}_1	754.1	ũ _R ∕ c _R	2227.2	h ⁰	127.0
$\widetilde{\chi}_2^0$	733.3	$\tilde{\chi}_2^{\pm}$	817.6	$\tilde{e}_L/\tilde{\mu}_L$	759.8	\tilde{t}_2	1125.9	ũ _L /č _L	2272.3	A^0/H^0	1581
$\widetilde{\chi}_3^0$	798.2	$\tilde{\nu}_{e/\mu}$	755.8	$\widetilde{ au}_1$	722.1	\tilde{b}_1	799.2	\tilde{d}_R/\tilde{s}_R	2227.2	H^{\pm}	1583.0
$\widetilde{\chi}_4^0$	827.2	$\tilde{\nu}_{\tau}$	720.9	$\widetilde{\tau}_2$	874.0	b ₂	2036.7	\tilde{d}_L/\tilde{s}_L	2272.3	ĝ	1228.9

 $\Omega_{\chi_1^0} h^2 = 0.017, \, \Delta a_\mu = 5.27 \times 10^{-10}, \, \mathrm{BR}(B_s^0 \to \mu^+ \mu^-) = 3.35 \times 10^{-9}, \, R_{\mathrm{MAX}} = 0.35, \, \Delta_{\mathrm{FT}} = 161.000 \, \mathrm{Gr}$

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

Outline

Introduction

The SUSY EW Fine-Tuning Problem

The MSSM with Heavy LSP

No-Scale \mathcal{F} -SU(5)

General Super-Natural Supersymmetry Conditions

Conclusion

∢ ≣⇒

Flipped $SU(5) \times U(1)_X$ Models: ¹³

- Doublet-triplet splitting via missing partner mechanism ¹¹.
- ► No dimension-five proton decay problem.
- Little hierarchy problem in string models: $M_{
 m String} \sim 20 \times M_{
 m GUT}$

$$M_{
m String}~=~g_{
m String} imes 5.27 imes 10^{17}~{
m GeV}$$
 .

► Testable flipped SU(5) × U(1)_X models: TeV-scale vector-like particles ¹².

¹¹I. Antoniadis, J. R. Ellis, J. S. Hagelin and D. V. Nanopoulos, Phys. Lett. B **194**, 231 (1987).

¹²J. Jiang, T. Li and D. V. Nanopoulos, Nucl. Phys. B **772**, 49 (2007).

Flipped $SU(5) \times U(1)_X$ Models:

- Free-fermionic string construction ¹⁴.
- ► F-theory model building ¹⁵.
- Heterotic String Constructions: Calabi-Yau ¹⁶; Orbifold ¹⁷.
- Orbifold GUTs ¹⁸.

¹⁴ J. L. Lopez, D. V. Nanopoulos and K. j. Yuan, Nucl. Phys. B **399**, 654 (1993).

¹⁵C. Beasley, J. J. Heckman and C. Vafa, JHEP **0901**, 059 (2009); J. Jiang, T. Li, D. V. Nanopoulos and D. Xie, Phys. Lett. B **677**, 322 (2009); Nucl. Phys. B **830**, 195 (2010).

¹⁶A. E. Faraggi, R. S. Garavuso and J. M. Isidro, Nucl. Phys. B **641**, 111 (2002)

¹⁷J. E. Kim and B. Kyae, Nucl. Phys. B **770**, 47 (2007).

¹⁸S. M. Barr and I. Dorsner, Phys. Rev. D **66**, 065013 (2002). < < □ > < □ > < Ξ > < Ξ > < Ξ > □ < < ⊃ <

\mathcal{F} -SU(5) Models

- ► The gauge group SU(5) × U(1)_X can be embedded into SO(10) model.
- Generator $U(1)_{Y'}$ in SU(5)

$$T_{\mathrm{U}(1)_{\mathrm{Y}'}} = \mathrm{diag}\left(-\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3}, \frac{1}{2}, \frac{1}{2}\right) \; .$$

Hypercharge

$$Q_Y = \frac{1}{5} \left(Q_X - Q_{Y'} \right) \; .$$

イロト イヨト イヨト イヨト

SM fermions

$$F_i = (\mathbf{10}, \mathbf{1}), \ ar{f}_i = (ar{\mathbf{5}}, -\mathbf{3}), \ ar{l}_i = (\mathbf{1}, \mathbf{5}) \ ,$$

$$F_i = (Q_i, D_i^c, N_i^c), \ \overline{f}_i = (U_i^c, L_i), \ \overline{l}_i = E_i^c \ .$$

Higgs particles:

$$H = (\mathbf{10}, \mathbf{1}), \ \overline{H} = (\overline{\mathbf{10}}, -\mathbf{1}), \ h = (\mathbf{5}, -\mathbf{2}), \ \overline{h} = (\mathbf{\overline{5}}, \mathbf{2}),$$
$$H = (Q_H, D_H^c, N_H^c), \ \overline{H} = (\overline{Q}_{\overline{H}}, \overline{D}_{\overline{H}}^c, \overline{N}_{\overline{H}}^c),$$
$$h = (D_h, D_h, D_h, H_d), \ \overline{h} = (\overline{D}_{\overline{h}}, \overline{D}_{\overline{h}}, \overline{D}_{\overline{h}}, H_u).$$
Elip

$$U \leftrightarrow D \ , \ N \leftrightarrow E \ , \ H_d \leftrightarrow H_u \ .$$

Symmetry breaking:

Superpotential

$$W_{\rm GUT} = \lambda_1 H H h + \lambda_2 \overline{H H h} + \Phi(\overline{H} H - M_{\rm H}^2)$$
.

- ▶ There is only one F-flat and D-flat direction along the N_H^c and \overline{N}_H^c directions: $\langle N_H^c \rangle = \langle \overline{N}_H^c \rangle = M_H$.
- The doublet-triplet splitting due to the missing partner mechanism
- ► No dimension-5 proton decay problem.

Image: A matrix of the second seco

\mathcal{F} -SU(5) Models

- To achieve the string scale gauge coupling unification, we introduce sets of vector-like particles in complete SU(5) × U(1)_X multiplets, whose contributions to the one-loop beta functions of the U(1)_Y, SU(2)_L and SU(3)_C gauge symmetries, Δb₁, Δb₂ and Δb₃ respectively, satisfy Δb₁ < Δb₂ = Δb₃.
- To avoid the Landau pole problem for the gauge couplings, we can only introduce the following two sets of vector-like particles around the TeV scale, which could be observed at the LHC

$$Z1: XF = (\mathbf{10}, \mathbf{1}) \equiv (XQ, XD^c, XN^c), \overline{XF} = (\overline{\mathbf{10}}, -\mathbf{1});$$

$$Z2: XF, \overline{XF}, XI = (\mathbf{1}, -\mathbf{5}), \overline{XI} = (\mathbf{1}, \mathbf{5}) \equiv XE^c.$$

 $Figure: \ \ Gauge \ coupling \ unification \ in \ the \ Type \ IA \ model.$

<ロ> <同> <同> < 同> < 同> < 同> :

No-Scale Supergravity ¹⁹:

- The vacuum energy vanishes automatically due to the suitable Kähler potential.
- ► At the minimum of the scalar potential, there are flat directions which leave the gravitino mass M_{3/2} undertermined.
- The super-trace quantity $Str \mathcal{M}^2$ is zero at the minimum.

$$\mathcal{K} = -3\ln(\mathcal{T} + \overline{\mathcal{T}} - \sum_i \overline{\Phi}_i \Phi_i).$$

¹⁹E. Cremmer, S. Ferrara, C. Kounnas and D. V. Nanopoulos, Phys. Lett. B **133**, 61 (1983); A. B. Lahanas and D. V. Nanopoulos, Phys. Rept. **145**, 1 (1987). □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷

No-Scale Supergravity:

- mSUGRA/CMSSM: $M_{1/2}$, M_0 , A, tan β , sign(μ).
- ▶ No-scale boundary condition: $M_{1/2} \neq 0$, $M_0 = A = B_\mu = 0$
- Natural solution to CP violation and FCNC problem.
- ► Disfavored by phenomenology: $M_0 = 0$ at traditional GUT scale.
- ▶ No-scale *F*-*SU*(5)

No-scale supergravity can be realized in the compactification of the weakly coupled heterotic string theory 20 and the compactification of M-theory on S^1/Z_2 at the leading order 21 .

²⁰E. Witten, Phys. Lett. B **155**, 151 (1985).

²¹T. Li, J. L. Lopez and D. V. Nanopoulos, Phys. Rev. D 56, 2602 (1997).□ → < (□) → (□)

- These models can be realized in heterotic string constructions, free fermionic string constructions, and F-theory model building.
- These models may be tested in the next LHC run.
- ► The Higgs boson mass can be around 126 GeV.
- ► The proton decay p → e⁺π⁰ from the heavy gauge boson exchange is within the reach of the future DUSEL and Hyper-Kamiokande experiments for a majority of the most plausible parameter space.
- The dark matter is within the reach of the XENON1T experiment.

イロト イヨト イヨト イヨト

Miracle of Vector-Like Particles

- String scale gauge coupling unification.
- Dimension-six proton decay.
- ► Lifting the lightest CP-even Higgs boson mass.
- Special sparticle spectra.

Question: Super-Natural Supersymmetry

Can we propose the Super-Natural Supersymmetric SMs whose EENZ or BG fine-tuning measure will be automatically 1 or order 1 $(\mathcal{O}(1))$?

No-Scale Supergravity

Scalar Potential

$$V = e^{K} \left((K^{-1})^{i}_{\overline{j}} D_{i} W D^{\overline{j}} \overline{W} - 3|W|^{2} \right)$$

.

where $(K^{-1})_{\overline{j}}^{i}$ is the inverse of the Kähler metric $K_{i}^{\overline{j}} = \partial^{2} K / \partial \Phi^{i} \partial \overline{\Phi}_{\overline{j}}$, and $D_{i} W = W_{i} + K_{i} W$.

Automatically vanishing scalar potential

$$\mathcal{K} = -3 \ln (T + \overline{T} - \sum_i \overline{\Phi}_i \Phi_i) \; .$$

Natural Solution to the Fine-Tuning Problem

Fine-Tuning Definition:

$$\Delta_{\mathrm{FT}} = \mathrm{Max}\{\Delta_i^{\mathrm{GUT}}\} \;, \;\;\; \Delta_i^{\mathrm{GUT}} = \left|rac{\partial \mathrm{ln}(M_Z)}{\partial \mathrm{ln}(a_i^{\mathrm{GUT}})}
ight| \;.$$

Natural Solution:

$$M_Z^n = f_n \left(\frac{M_Z}{M_{1/2}}\right) M_{1/2}^n .$$

$$\frac{\partial \ln(M_Z^n)}{\partial \ln(M_{1/2}^n)} \simeq \frac{M_{1/2}^n}{M_Z^n} \frac{\partial M_Z^n}{\partial M_{1/2}^n} \simeq \frac{1}{f_n} f_n \simeq \mathcal{O}(1) \ .$$

イロト イヨト イヨト イヨト

No-Scale \mathcal{F} -SU(5)

• μ problem ²²:

$$\mu \propto M_{1/2} \propto M_{3/2}$$
 .

- All the mass parameters are proportional to $M_{1/2}$
- Natural solution ²³

$$\mu\simeq M_{1/2}$$
 .

 $^{^{22}\}text{G.}$ F. Giudice and A. Masiero, Phys. Lett. B $206,\,480$ (1988).

²³T. Leggett, T. Li, J. A. Maxin, D. V. Nanopoulos and J. W. Walker, arXiv:1403.3099 [hep=ph]. < ∃ → ∃ → </p>

Tianjun Li ITP-CAS

Tianjun Li ITP-CAS

Tianjun Li ITP-CAS

Outline

Introduction

The SUSY EW Fine-Tuning Problem

The MSSM with Heavy LSP

No-Scale \mathcal{F} -SU(5)

General Super-Natural Supersymmetry Conditions

Conclusion

< ≣ >

- One and only one chiral superfield or modulus breaks supersymmetry.
- All the supersymmetry breaking soft terms are proportional to gravitino mass.
- μ term is generated via the GM mechanism after supersymmetry breaking in the MSSM, or NMSSM.
- No-scale supergravity or M-theory on S^1/Z_2^{24} .

²⁴T. Li, Phys. Rev. D **59**, 107902 (1999) [hep-ph/9804243]. < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The MSSM with No-Scale Supergravity

- ▶ $\mu \simeq 1.13 M_{1/2}$
- ► Fine-tuning measure is less than 15.

A B > A B >

- ∢ ≣ ▶

< □ > < □ > < □ > < □ > < □ > .

Outline

Introduction

The SUSY EW Fine-Tuning Problem

The MSSM with Heavy LSP

No-Scale \mathcal{F} -SU(5)

General Super-Natural Supersymmetry Conditions

Conclusion

Image: A math a math

< ≣ >

Super-Natural Supersymmetry: the EENZ or BG fine-tuning measure is automatically $\mathcal{O}(1)$.

イロト イヨト イヨト イヨト

Thank You Very Much for Your Attention!

・ロト ・回ト ・ヨト

- ∢ ≣ ▶