CMS Experiment at LHC, CERN Data recorded: Tue May 25 06:24:04 2010 CEST Run/Event: 136100 / 103078800 Lumi section: 348

Stop Searches at Hadron Colliders

Yang Bai

University of Wisconsin-Madison

9th Workshop of TeV Physics Working Group

May 16, 2014

Three Features of SUSY

(I) Fine-tuning problem for the I25 GeV Higgs boson

(2) gauge-coupling unification (3) WIMP candidates

Natural SUSY

(I) Fine-tuning problem for the I25 GeV Higgs

new particle masses are inversely proportional to their couplings to Higgs

"The More Minimal Supersymmetric Standard Model"

Dimopoulos and Giudice, 1995 Cohen, Kaplan and Nelson, 1996

hep-ph/9607394

- 1. The world is supersymmetric above ~ 20 TeV;
- 4. The first two generations couple more strongly to SUSY breaking than the third, and the respective squarks and sleptons are heavy, with masses at the scale \tilde{M} ;
- 5. The top squarks and left-handed bottom squarks are much lighter, with masses $\lesssim 1~{\rm TeV}.$
- 6. The weak gauginos and higgsinos also have masses $\leq 1 \text{ TeV}$;

Stop QCD Production Cross Sections

5

Right-handed Stop

Right-handed Stop

Right-handed Stop Decay

one can add the following R-parity violating operator

 $\lambda_{3ij}\,\tilde{t}_R\,d_R^i\,d_R^j \qquad (i\neq j)$

(or higher-dimensional operators)

Serve as a benchmark for purely jetty pair-production searches (minimal color and spin)

RPV Stop Limits

Current Limits are weak:

• LEP: 90 GeV • Tevatron: 100 GeV

RPV Stop Limits

Current Limits are weak:

- LEP: 90 GeV Tevatron: 100 GeV
- LHC: No limit !!!

Jet-substructure can help

(I) Focus on high-pT boosted signal production

- reduce combinatoric ambiguities
- generally better S/B

(II) Flexible partition of decay radiation to individual stop parton

- better rejection of uncorrelated radiation (pileup, ISR, UE)
- better signal mass resolution

(III) Scale-free procedure

background processed into ~ featureless spectrum

AR DISTRIBUTIONS

Delta R Distribution

- Jet-Ht trigger: offline Ht > 900 GeV
- Capture stop decays in R = 1.5 C/A jets

Cut Flow

14

Avangegerichasspearedra

2202258885117717885 Unitagged Sensitivities, untagged

exclusion ~300 GeV

YB, Katz, Tweedie, 1309.6631

discovery ~150 GeV

COLE LOCHSIIDVIIVED, ED, HEGGEGGEG

Sensitivities, b-tagged

exclusion ~350-400 GeV

discovery ~250 GeV

YB, Katz, Tweedie, 1309.6631

More RPV Decays

18

LQD	med	iators	final state (of each stop)		
ijk	first	second	$\tilde{\chi}^0, \tilde{\chi}^{\pm} \to \mathrm{RPV}$	$ \tilde{\chi}^{\pm} \to \tilde{\chi}^0 W^{*\pm} $ $ \tilde{\chi}^0 \to \text{RPV} $	
			ℓj		
	\tilde{H} or \tilde{W}	\tilde{t}	$\ell t t j, \ell b b j$	$\ell t b j$	
	\tilde{H} or \tilde{W}	$ ilde{b}_L$	u t b j	u b b j	
131, 132, 231, 232	Ŵ	$ ilde q/ ilde u/ ilde \ell_L$	$\ell ttj, \ell bbj, \nu tbj$	$\ell t b j, oldsymbol{ u} b b j$	
	\tilde{B}	\tilde{t}	$\ell t t j$		
	\tilde{B}	\tilde{b}_L	u t b j		
	\tilde{B}	$ ilde q/ ilde u/ ilde \ell_L$	$\ell t t j, oldsymbol{ u} t b j$		
			ℓb		
	\tilde{H} or \tilde{W}	\tilde{t}	<i>lttb</i> , <i>lbbb</i>	ℓtbb	
	\tilde{H} or \tilde{W}	\tilde{b}_L	u t b b	νbbb	
133, 233	\tilde{H}	\tilde{b}_R	$\ell t t b, \boldsymbol{\nu t b b}$	<i>ltbb</i> , <i>νbbb</i>	
	\tilde{W}	$ ilde{ u}/ ilde{\ell}_L$	$\ell t t b, \ell b b b, \nu t b b$	<i>ltbb</i> , <i>νbbb</i>	
	\tilde{B}	\tilde{t}	$\ell t t b$		
	\tilde{B}	\tilde{b}_L	u t b b		
	\tilde{B}	$\tilde{ u}/\tilde{\ell}_L/\tilde{b}_R$	<i>lttb</i> , <i>νtbb</i>		
			au j		
	\tilde{H} or \tilde{W}	\tilde{t}	$ au ttj, oldsymbol{ au} oldsymbol{b} oldsymbol{b} oldsymbol{j}$	au t b j	
	\tilde{H} or \tilde{W}	$ ilde{b}_L$	u t b j	u b b j	
001 000	\tilde{H}	$ ilde{ u}_{ au}/ ilde{ au}_L$	$ au tt j, oldsymbol{ au} oldsymbol{b} oldsymbol{b} oldsymbol{j}$	au t b j	
331, 332	\tilde{W}	$\tilde{q}/\tilde{ u}_{ au}/\tilde{ au}_L$	$\tau ttj, \boldsymbol{\tau bbj}, \nu tbj$	$ au tbj, oldsymbol{ u} bbj$	
	\tilde{B}	\tilde{t}	au tt j		
	\tilde{B}	\tilde{b}_L	u t b j		
	\tilde{B}	$\tilde{q}/\tilde{ u}_{ au}/\tilde{ au}_L$	$ au ttj$, $oldsymbol{ u} tbj$		
			au b		
	\tilde{H} or \tilde{W}	\tilde{t}	$ au ttb, oldsymbol{ au} oldsymbol{b} oldsymbol{b}$	au tbb	
333	\tilde{H} or \tilde{W}	\tilde{b}_L	u t b b	u bbb	
	Ĥ	$\tilde{ u}_{ au}/ ilde{ au}_L$	$ au ttb, oldsymbol{ au} oldsymbol{b} oldsymbol{b}$	au tbb	
	\tilde{H}	\tilde{b}_R	$ au ttb$, $oldsymbol{ u} tbb$	$ au tbb, oldsymbol{ u} bbb$	
	\tilde{W}	$\tilde{ u}_{ au}/ ilde{ au}_L$	au ttb, $ au bbb$, $ u tbb$	$ au tbb, oldsymbol{ u} bbb$	
	\tilde{B}	\tilde{t}	au ttb		
	\tilde{B}	\tilde{b}_L	u t b b		
	\tilde{B}	$\tilde{\nu}_{ au}/\tilde{ au}_L/\tilde{b}_R$	$ au ttb$, $\boldsymbol{\nu tbb}$		

UDD	medi	ators	final state (of each stop)		
ijk	first	second	$\tilde{\chi}^0, \tilde{\chi}^{\pm} \to \mathrm{RPV}$	$ \tilde{\chi}^{\pm} \to \tilde{\chi}^0 W^{*\pm} $ $ \tilde{\chi}^0 \to \text{RPV} $	
112, 212	\tilde{g} or \tilde{B}	\tilde{q}	tjjj		
113, 123, 213 , 223	$\tilde{g} \text{ or } \tilde{B}$ \tilde{H}	${egin{array}{c} { ilde q} \\ { ilde b}_R \end{array}}$	tbjj tbjj	bbjj	
	b_R		Wjj		
312	\tilde{H} \tilde{B}	$egin{array}{c} & & & \ & & \tilde{t} & & \ & & ilde{q} & & \ & & ilde{q} & & \ & & & \ & & & & \ & & & & \ & & & & \ & & & & & \ & & & & & \ & & & & & \ & & & & & & \ & & & & & & \ & & & & & & & \ & & & & & & & \ & & & & & & & \ & & & & & & & & \ & & & & & & & & \ & & & & & & & & & \ & & & & & & & & & & \ & & & & & & & & & & \ & & & & & & & & & & & \ & & & & & & & & & & & & \ & & & & & & & & & & & & & & & & & & \ &$	$jj \ ttjj, m{bbjj} \ ttjj$	tbjj [SS]	
313, 323	$egin{array}{c} - & & \\ & ilde{H} & \\ & ilde{B} & \\ & ilde{B} & \end{array}$	$egin{array}{c} & & & \ & & \tilde{t} & \ & & & \tilde{b}_R & \ & & & & \tilde{q} \end{array}$	bj ttbj, bbbj ttbj ttbj	tbbj [ss] tbbj [ss]	

Evans and Katz, 1209.0764

R-parity Conserving Stop (Vanilla Stop)

Search Regions

Many Collider Studies

$\tilde{t}_1 \rightarrow t + \tilde{\chi}_1^0$ the signal is ttbar+MET

.....

Early work:

Meade and Reece, hep-ph/0601124 Kong and Park, hep-ph/0703057 Han, Mahbubani, Walker, Wang, 0803.3820

Endpoints:

Topness:

Spin-correlations: Top-tagging:

YB, Cheng, Gallichio, Gu, 1203.4813 Cao, Han, Wu, Yang, Zhang, 1206.3865 Killic and Tweedie, 1211.6106 Han, Katz, Krohn, Reece, 1205.5808 Plehn, Spannowsky, Takeuchi, 1205.2696 Kaplan, Rehermann, Stolarski, 1205.5816 Dutta, Kamon, Kolev, Sinha, Wang, 1207.1893 Shapes of missing Et: Alves, Buckley, Fox, Lykken, Yu, 1205.5805 Graesser and Shelton, 1212.4495

Search for Vanilla Stops

 $m_{\tilde{t}_1} \gg m_t + m_{\tilde{\chi}_1^0}$

The signal is ttbar+MET (one lepton + jets + MET) The leading background is ttbar in the dileptonic channel

TABLE I: Summary of expected SM yields including statistical and systematic uncertainties compared with the observed number of events in the signal region.

Source	Number of events
Dilepton $t\overline{t}$	62 ± 15
Single-lepton $t\bar{t}/W$ +jets	33.1 ± 3.8
Multi-jet	1.2 ± 1.2
Single top	3.5 ± 0.8
Z+jets	0.9 ± 0.3
Dibosons	0.9 ± 0.2
Total	101 ± 16
Data	105

ATLAS Collaboration, 1.0/fb@ 7 TeV, 1109.4725

Reduce the ttbar Background

YB, Cheng, Gallichhio, Gu, 1203.4813

see also the "topness" variable and a comparison Graesser and Shelton, 1212.4495

Reduce the ttbar Background

YB, Cheng, Gallichhio, Gu, 1203.4813

Minimum Cuts					$m_{\rm stop} = 600 {\rm GeV}$			
E_T^{miss}	$m_{ m eff}$	M_{T2}^W	M_{T2}^b	M_{T2}^{bl}	$S_{20fb^{-1}}$	$B_{20fb^{-1}}$	S/B	σ
(150)	-	-	-	-	16.7	738.4	0.02	0.60
377	_	_	_	-	4.5	3.0	1.49	2.04
345	696	-	-	-	6.1	6.3	0.97	2.05
337	727	168	-	-	5.9	3.0	2.01	2.66
337	726			168	5.8	2.7	2.17	2.69
333	740		157		5.3	2.1	2.59	2.73
332	741	168	148	91	5.5	2.1	2.67	2.81

Motivated ATLAS Search

ATLAS Collaboration, ATLAS-CONF-2013-037

Boosted Top

• Choose both top quarks to have hadronic decay

⁻¹ 20 20 20 20 20 ťť* 8 M_{\\\\\\\\} (GeV) tī + jets 300 Single top + jets 7 V+jets V+bb+jets 250 2.1 6 3.6 2.9 200 5 15 4 3.2 0.3 6.4 150 10 3 7.8 8+ 3.9 100 2 5 0.2 8+ 8+ 4.1 50 1 0.5 8+ 8+ 4.2 0 ٥ 50 100 150 200 250 300 350 400 450 500 $$M_{\rm i}$~(GeV)$$ 0 250 300 350 400 450 500 550 600 200 M₇ (GeV)

Kaplan, Rehermann, Stolarski, 1205.5816

(440 GeV, 100 GeV)

Boosted Top

• Potential improvement

- * transverse mass of the sub-jet + MET
- * MT2 constructed from 2 t + MET

• spin-correlation

Han, Katz, Krohn, Reece, 1205.5808

• Leptonic MT2

Kilic and Tweedie, 1211.6106

• Vector-boson fusion

Dutta et. al., 1312.1348

Stop+Chargino+Neutralino

$$m_W \lesssim m_{\tilde{t}_1} - m_{\tilde{\chi}_1^0} \lesssim m_t$$

Current Status (two-lepton)

ATLAS Collaboration, ATLAS-CONF-2012-167

compared to the mass splittings in the ttbar background

$$m_t - M_W \qquad \qquad M_W - m_{\nu}$$

A Sample of Spectra

	$m_{\tilde{t}_1} \ (\text{GeV})$	$m_{\tilde{\chi}_1^{\pm}} \; (\text{GeV})$	$m_{\tilde{\chi}_1^0}~({ m GeV})$	<i>b</i> -jets	leptons
S1	300	160	120	harder	softer
S2	300	200	120	comparable	comparable
S3	300	230	120	softer	harder
S4	250	160	120	comparable	softer
S5	250	180	120	softer	softer
S6	250	200	120	softer	comparable

MT2 Variables

A Combination of Variables

	$m_{\tilde{t}_1}~({ m GeV})$	$m_{\tilde{\chi}_1^{\pm}} \; (\text{GeV})$	$m_{\tilde{\chi}_1^0}~({ m GeV})$	<i>b</i> -jets	leptons	best-variables
S1	300	160	120	harder	softer	M_{T2}^b
S2	300	200	120	comparable	comparable	combo-all
S3	300	230	120	softer	harder	M_{T2}^{ℓ}
S4	250	160	120	comparable	softer	$p_T^\ell + M_{T2}^\ell$
S5	250	180	120	softer	softer	combo-all
S6	250	200	120	softer	comparable	Δ_2

YB, Cheng, Gallichhio, Gu, 1204.3148

Status

Projection

Discovery of the Higgs Boson

just one month before the discovery

Discovery of the Higgs Boson

just one month before the discovery

