How to break EW symmetry

 naturally?
Jing Shu

ITP-CAS
C. Csaki, T. Ma, J. Shu., Phys.Rev.Lett. 119 (2017) no13, 131803
C. Csaki, T. Ma, J. Shu., Phys.Rev.Lett. 121 (2018) no23, 231801

Many many other
C. Csaki, T. Ma, J. Shu, J-H. Yu, arxiv:1810.07704
papers
C. Csaki, F. Freitas, L. Huang, T. Ma, J. Shu, M. Perelstein, arxiv:1811.01961

Outline

Basic introduction
Brief background knowledge on Maximally Symmetric Composite Higgs

How to realize maximal symmetry, even from warped extra dimensions (emergence!!!)

Naturalness sum rule, how to test?
Trigonometric Parity for the Composite Higgs
Outlook on HEP and other fields

"Old" physics up to date

The Weinberg-Salam Mindel

$$
\begin{aligned}
& \mathcal{L}=\bar{E}_{L}(i \not \partial) E_{L}+\bar{e}_{R}(i \not \partial) e_{R}+\bar{Q}_{L}(i \not \partial) Q_{L}+\bar{u}_{R}(i \not \partial) u_{R}+\bar{d}_{R}(\\
& +g\left(W_{\mu}^{+} J_{W}^{\mu+}+W_{\mu}^{-} J_{W}^{\mu-}+Z_{\mu}^{0} J_{Z}^{\mu}\right)+e A_{\mu} J_{E M}^{\mu}, \\
& J_{W}^{\mu+}=\frac{1}{\sqrt{2}}\left(\bar{\nu}_{L} \gamma^{\mu} e_{L}+\bar{u}_{L} \gamma^{\mu} d_{L}\right) ; \\
& e=\frac{g g^{\prime}}{\sqrt{g^{2}+g^{\prime 2}}} \\
& J_{Z}^{\mu}=\frac{1}{\cos \theta_{w}}\left[\bar{\nu}_{L} \gamma^{\mu}\left(\frac{1}{2}\right) \nu_{L}+\bar{e}_{L} \gamma^{\mu}\left(-\frac{1}{2}+\sin ^{2} \theta_{w}\right) e_{L}+\bar{e}_{R} \gamma^{\mu}(\right. \\
& +\bar{u}_{L} \gamma^{\mu}\left(\frac{1}{2}-\frac{2}{3} \sin ^{2} \theta_{w}\right) u_{L}++\bar{u}_{R} \gamma^{\mu}\left(-\frac{2}{3} \sin ^{2} \theta_{w}\right) \\
& +\bar{d}_{L} \gamma^{\mu}\left(-\frac{1}{2}+\frac{1}{3} \sin ^{2} \theta_{w}\right) d_{L}+\bar{d}_{R} \gamma^{\mu}\left(\frac{1}{3} \sin ^{2} \theta_{w}\right) d_{l} \\
& J_{E M}^{\mu}=\bar{e} \gamma^{\mu}(-1) e+\bar{u} \gamma^{\mu}\left(+\frac{2}{3}\right) u+\bar{d} \gamma^{\mu}\left(-\frac{1}{3}\right) d \text {. }
\end{aligned}
$$

Why God's particle?

Higgs potential

$$
V(h)=\frac{1}{2} \mu^{2} h^{2}+\frac{\lambda}{4} h^{4}
$$

EWSB

(Higgs mechanism)

$$
\langle h\rangle \equiv v \neq 0 \rightarrow m_{W}=g_{W} \frac{v}{2}
$$

Gives all particles mass

The origin of the mass

Unknown in "old" physics

000
Higgs potential

$$
V(h)=\frac{1}{2} \mu^{2} h^{2}+\frac{\lambda}{4} h^{4}
$$

Laudau-Ginzberg potential (Superconductivity)

$$
m_{h}^{2}\left(h^{\dagger} h\right)+\frac{1}{2} \lambda\left(h^{\dagger} h\right)^{2}+\frac{1}{3!\Lambda^{2}}\left(h^{\dagger} h\right)^{3}
$$

$$
V(h) \simeq-\gamma s_{h}^{2}+\beta s_{h}^{4} .
$$

We actually never know the Higgs potential and why EWSB?

CORE question in particle physics

Unknown in "old" physics

What we know now

Tayler expand on the quantum fluctuation of higgs potential

$$
h \wedge 5 。 \circ \circ \circ \circ h \wedge 9
$$

Future

Collider

Not known how to probe

$$
\begin{aligned}
& V(h)=\frac{1}{2} \mu^{2} h^{2}+\frac{\lambda}{4} h^{4} \quad \begin{array}{c}
\text { signal, different } \\
\text { potential }
\end{array} \\
& V(h)=\frac{1}{2} \mu^{2} h^{2}-\frac{\lambda}{4} h^{4}+\frac{1}{\Lambda^{2}} h^{6}
\end{aligned}
$$ Same collider

Substructure of Higgs?

000

Suppose in NP scale, we see substructure of Higgs (like
QCD Pi form factor deviations)
Possible NP deviation

$$
\delta=c \frac{m_{W}^{2}}{M_{\mathrm{NP}}^{2}}, c=\mathcal{O}(1)
$$

LHC

Precision Higgs measure

Precision of Higgs couplingmeasurement (Contrained Fit)

Higgs Factory

Higgs compositeness for Higgs factory

Higgs as a pNGB

Why Higgs as a pNGB?

Kaplan, H. Georgi, Phys.Lett.B I36 (1984) I 85
Kaplan, H. Georgi, Phys.Lett.B I45 (1984) 216
Higgs mass small comping to confinement scale ($1 \sim 10 \mathrm{TeV}$) Highly constrained by LEP

O The radiatively generated Higgs potential
universal prediction on Higgs couplings (Like pion soft theorem)

If the strong dynamics triggers the breaking G / H, pNGB is a composite particle.

The origin of Higgs potential

But pions has no vev only a positive mass

The origin of the Higgs potential

OThe "parton" mass for the composite Higgs
L. Da, T. Ma, J. Shu, in preparation

Quantum corrections from the SM particles (Mostly top)?

Maximally symmetric composite Higgs

Why another CHM?

OOOCan get the correct EWSB.
O Can easily get the 125 GeV light Higgs mass?
O No UV dependence of Higgs potential.
gauge hierarchy problem
Can we have minimal technical tuning
O general methods based on symmetric coset space to describe the EWSB (Higgs as a pNGB) in an unified manner.

Simplest Structure
O Find the new symmetry breaking pattern (Maximal symmetry) automatically solves all problems above

$$
\text { C. Csaki, T. Ma, J. Shu., Phys.Rev.Lett. } 119 \text { (2017) no13, } 131803
$$

Symmetric space

For any global symmetry G breaks into H
$T^{\hat{a}}\left(T^{a}\right)$ is the (un)broken generator
$\left[T^{a}, T^{a}\right] \sim T^{a},\left[T^{a}, T^{\hat{a}}\right] \sim T^{\hat{a}} \quad\left[T^{\hat{a}}, T^{\hat{a}}\right] \sim T^{a}$ H is a closed group symmetric coset space

G always has an automorphism

$$
V T^{a} V^{\dagger}=T^{a} \quad V T^{\hat{a}} V^{\dagger}=-T^{\hat{a}}
$$

Higgs is the NGB in the symmetric coset space
V is also the Higgs parity operator, like pion parity in QCD

Examples:

Examples of Symmetric Coset Space:

$S U(M+N) / S U(M) \times S U(N) \times U(1)$
 $S O(M+N) / S O(M) \times S O(N)$

$S O(5) / S O(4)$

$$
V=\left(\begin{array}{cc}
\mathbf{1}_{4 \times 4} & 0 \\
0 & -1
\end{array}\right)
$$

Actually cover

$S U(2 N) / S p(2 N)$

$S U(N) / S O(N)$
$G \times G / G_{V}$

$$
\Phi=\mathbf{1}_{N \times N} \times\left(i \sigma_{2}\right)
$$

almost all useful

$$
\Phi=\left(\begin{array}{cc}
0 & 1_{\frac{N}{2} \times \frac{N}{2}} \\
1_{\frac{N}{2} \times \frac{N}{2}} & 0
\end{array}\right) \quad N=2 l
$$ cosets

$$
\Phi=\left(\begin{array}{cc}
0 & 1_{\frac{N-1}{2} \times \frac{N-1}{2}} \\
0 & 1 \\
1_{\frac{N-1}{2} \times \frac{N-1}{2}} & 0
\end{array}\right) \quad N=2 l+1
$$

Goldstone in symmetric space

OOO For any global symmetry G spontaneously breaks into H
If decouple the "Higgs"

$$
U=\exp \left(\frac{i h^{\hat{a}} T^{\hat{a}}}{f}\right)
$$

The CCWZ transformation

$$
U \rightarrow g U h\left(h^{\hat{a}}, g\right)^{\dagger}
$$

For any symmetric coset space $\underset{\text { construction }}{\text { Key }} \quad \Sigma^{\prime}=U^{2} V$

Information of G/H is included in V

$$
\tilde{U}=V U V^{\dagger}=U^{\dagger} .
$$

$\Sigma^{\prime} \rightarrow g \Sigma^{\prime} g^{\dagger}$.
Goldstone matrix transform linearly!

G/H CW potential from top

Consider the MCHM5 SO(5)/SO(4)

SM Fermion
$\Psi_{q_{L}}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}b_{L} \\ -3 b_{L} \\ t_{L} \\ i t_{L} \\ 0\end{array}\right) \quad \Psi_{t_{R}}=\left(\begin{array}{c}0 \\ 0 \\ 0 \\ 0 \\ t_{R}\end{array}\right)$

$$
\Sigma^{\prime} \rightarrow g \Sigma^{\prime} g^{\dagger}
$$

$\Lambda^{L}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccccc}0 & 0 & 1 & -i & 0 \\ 1 & i & 0 & 0 & 0\end{array}\right)$ Spurion vev $\Lambda^{R}=\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 1\end{array}\right)$

$$
\Psi_{Q_{L}}=\Lambda_{L}^{\alpha} Q_{L}^{\alpha}
$$

$$
\Psi_{t_{R}}=\Lambda_{R} t_{R}
$$

$$
\Sigma^{\prime}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & c_{2 h} & -s_{2 h} \\
0 & 0 & 0 & -s_{2 h} & -c_{2 h}
\end{array}\right)
$$

$Q_{L}^{\alpha} \mid t_{R} \mathrm{SU}(2)$ multiplet

G/H CW potential from top

Most general Lagrangian $\Sigma^{\prime 2}=1$

$$
\Sigma^{\prime} \rightarrow g \Sigma^{\prime} g^{\dagger} .
$$

$$
\begin{aligned}
\mathcal{L}_{\mathrm{eff}}= & \bar{\Psi}_{Q_{L}} \not p\left(\Pi_{0}^{q}(p)+\Pi_{1}^{q}(p) \Sigma^{\prime}\right) \Psi_{Q_{L}} \\
& +\bar{\Psi}_{t_{R}} \not p\left(\Pi_{0}^{t}(p)+\Pi_{1}^{t}(p) \Sigma^{\prime}\right) \Psi_{t_{R}} \\
& +\bar{\Psi}_{Q_{L}} M_{1}^{t}(p) \Sigma^{\prime} \Psi_{t_{R}}+\text { h.c. }
\end{aligned}
$$

$\Psi \rightarrow g \Psi \quad$ fund rep
Derivatives of GB does not contribute to Higgs potential

Converting back to the SM fields by using spurions.

$$
\mathcal{L}_{\mathrm{eff}}=\bar{Q}_{L}^{\alpha} \phi \operatorname{Tr}\left[\left(\Pi_{0}^{q}+\Pi_{1}^{q} \Sigma^{\prime}\right) P_{l}^{\alpha \beta}\right] Q_{L}^{\beta}
$$

$$
+\bar{t}_{R p p} \operatorname{Tr}\left[\left(\Pi_{0}^{t}+\Pi_{1}^{t} \Sigma^{\prime}\right) P_{r}\right] t_{R}
$$

$$
+M_{1}^{t} \bar{Q}_{L}^{\alpha} t_{R} \operatorname{Tr}\left[\Sigma^{\prime} \cdot P_{l r}^{\alpha}\right],
$$

$$
P_{l}^{\alpha \beta}=\left(\Lambda_{L}^{\beta}\right)^{\dagger} \Lambda_{L}^{\alpha}, P_{r}=\left(\Lambda_{R}\right)^{\dagger} \Lambda_{R} P_{l r}^{\alpha}=\left(\Lambda_{R}\right)^{\dagger} \Lambda_{L}^{\alpha}
$$ contribute to Higgs potential

Enlarged Global Symmetry

$\Pi_{1}^{q, t}=0$ LH \& RH top each has $G_{L} \times G_{R}$ symmetry

$$
\begin{array}{cl}
G_{L} & \Psi_{Q_{L}} \rightarrow g_{L} \Psi_{Q_{L}} \\
G_{L} & \Psi_{t_{R}} \rightarrow g_{R} \Psi_{t_{R}}
\end{array}
$$ global

Only acting on fermions, not Goldstones

Only the mass term breaks them into $G_{V^{\prime}}$
$g_{L} \Sigma^{\prime} g_{R}^{\dagger}=\Sigma^{\prime}$. Maximal subgroup leaves the GB invariant

$$
g_{L, R}^{\prime}=U^{\dagger} g_{L, R} U
$$

Global Symmetry from composites

$$
g_{L}^{\prime} V g_{R}^{\prime \dagger}=V
$$

What is Maximal Symmetry?

Mathematical structure

Can be used as a new UV completion of maximal symmetry just like moose model for LH,
C. Csaki, T. Ma, J. Shu., Phys.Rev.Lett.

119 (2017) no13, 131803
Appendix A

The Higgs potential

000

$$
V(h)=-2 N_{c} \int \frac{d^{4} p}{2 \pi^{4}} \log \left[1+\frac{\left(M_{1}^{t}\right)^{2}\left|\operatorname{Tr}\left[\Sigma^{\prime} \cdot P_{l r}^{1}\right]\right|^{2}}{p^{2} \operatorname{Tr}\left[\Pi_{0}^{q} P_{l}^{11}\right] \operatorname{Tr}\left[\Pi_{0}^{t} P_{r}\right]}\right]
$$

Higgs potential is just the top mass square up to some factors after integration on momentum.

$$
\log (I+x) \text { expansion }
$$

CW
potential
mixture with top partners
No UV Divergence

$$
\begin{gathered}
M_{1}^{t} \sim \lambda_{L} \lambda_{R} f^{2}\left(M_{Q}-M_{S}\right) / p^{2} \quad V(h) \sim \lambda_{L}^{2} \lambda_{R}^{2} f^{4}\left(M_{Q}-M_{S}\right)^{2} / \Lambda^{2} \\
m_{t} \sim \sin _{2 h} \quad \text { Higgs potential }\left(\sin _{2 h}\right)^{2}=s_{h}^{2}-s_{h}^{4} .
\end{gathered}
$$

Understand deconstruction

OOOCollective Symmetry Breaking, "Little Higgs $\sim \int d^{4} p \Pi_{1}^{q, t}$

G/H
 G/H
 One need 3 G/H

G/H
structures
$\mathrm{N}=3$ for finite potential
Even for large N , still have very troublesome finite piece

Higgs potential tends to have large v/f> I (double tuning)

Higgs mass tends to be large than 300 GeV

Fine-tuning

Realization from MCHM5

Fermion mass from linear mixing

$$
\mathcal{L}_{m i x}=\lambda \bar{q}_{i} \mathcal{O}_{i}
$$

$$
\mathcal{O}_{i} \sim U \Psi_{i}
$$

partial compositeness

5=4+ I Composite to partners

$$
\Psi_{Q}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
i B-i X_{5 / 3} \\
B+X_{5 / 3} \\
i T+i X_{2 / 3} \\
-T+X_{2 / 3} \\
0
\end{array}\right) \quad \Psi_{S}=\left(\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
T_{1}
\end{array}\right)
$$

$$
\mathcal{L}=\lambda_{L} \bar{q}_{L}^{\alpha} \Lambda_{\alpha I}^{L} \mathcal{O}_{R}^{I}+\lambda_{R} \bar{t}_{R} \Lambda_{\alpha I}^{R} \mathcal{O}_{L}^{I}+h . c \quad U \rightarrow g U h\left(h^{\hat{a}}, g\right)^{\dagger}
$$

Fermionic Lagrangian:

Top and top partner masses:

$$
\begin{aligned}
\mathcal{L}_{f} & =\bar{\Psi}_{Q}\left(i \not 力-M_{Q}\right) \Psi_{Q}+\bar{\Psi}_{S}\left(i \not \downarrow-M_{S}\right) \Psi_{S} \\
& +\frac{\lambda_{R} f}{\sqrt{2}} \bar{\Psi}_{t_{R}} P_{L}\left(\epsilon_{t S} U \Psi_{S}+\epsilon_{t Q} U \Psi_{Q}\right) \\
& +\lambda_{L} f \bar{\Psi}_{q_{L}} P_{R}\left(\epsilon_{q S} U \Psi_{S}+\epsilon_{q Q} U \Psi_{Q}\right)+h . c
\end{aligned}
$$

$$
m_{t}=\frac{\epsilon_{q Q} \epsilon_{t S} f^{2}}{2 M_{T} M_{T_{1}}}\left|\frac{\epsilon_{q S}}{\epsilon_{q Q}} M_{Q}-\frac{\epsilon_{t Q}}{\epsilon_{t S}} M_{S}\right| \sin \frac{\langle h\rangle}{f}
$$

$$
M_{T}=\sqrt{\epsilon_{q Q}^{2} f^{2}+M_{Q}^{2}}, M_{T_{1}}=\sqrt{\frac{\epsilon_{t S}^{2}}{2} f^{2}+M_{S}^{2}}
$$

The use of V

Rewrite the top partners into a full rep of G

$$
\Psi_{+}=V \Psi_{-} \quad V=\left(\begin{array}{cc}
1_{4 \times 4} & 0 \\
0 & -1
\end{array}\right) \quad \begin{aligned}
& \Psi_{+}=\frac{1}{\sqrt{2}}\left(\Psi_{2}+\Psi_{1}\right) \quad \Psi_{-}=\frac{1}{\sqrt{2}}\left(\Psi_{2}-\Psi_{1}\right) \\
& c_{ \pm R}=\frac{\epsilon_{t Q} \pm \epsilon_{t S}}{2}, c_{ \pm L}=\frac{\epsilon_{q Q} \pm \epsilon_{q S}}{\sqrt{2}}
\end{aligned}
$$

The Lagrangian is G invariant except for V

Elementary-composite mixing is G invariant

$$
c_{-L}=c_{-R}=0
$$

Enlarged global sym:

Symmetries in CS

Two vector mass: twisted and untwisted:
$S O(5)_{L}$

$$
\Psi_{+L} \rightarrow g_{L}^{\prime} \Psi_{+L}
$$

$S O(5)_{R}$

$$
\Psi_{+L} \rightarrow g_{L}^{\prime} \Psi_{+L}
$$

The mass term explicitly break the global symmetry

Maximal Symmetry: Only the Twisted Mass

$$
\begin{aligned}
M_{Q}-M_{S}=0 & \Rightarrow S O(5)_{L} \times S O(5)_{R} / S O(5)_{V} \\
M_{Q}+M_{S}=0 & \Rightarrow S O(5)_{L} \times S O(5)_{R} / S O(5)_{V^{\prime}} \quad g_{L}^{\prime} V g_{R}^{\prime \dagger}=V \\
\left|M_{Q}\right| \neq\left|M_{S}\right| & \Rightarrow S O(5)_{L} \times S O(5)_{R} / S O(4)_{V}
\end{aligned}
$$

The form factors

ooo

Integrating out the top partners, we have the form factors in the EFT

$$
\begin{align*}
\frac{\Pi_{0}^{q, t}}{\lambda_{L, R}^{2} f^{2}} & =1+\frac{\left(c_{-L, R}^{2}+c_{+L, R}^{2}\right)\left(M_{Q}^{2}+M_{S}^{2}-2 p^{2}\right)}{2\left(p^{2}-M_{S}^{2}\right)\left(M_{Q}^{2}-p^{2}\right)} \\
+ & \frac{c_{-L, R} c_{+L, R}\left(M_{S}+M_{Q}\right)\left(M_{S}-M_{Q}\right)}{\left(p^{2}-M_{S}^{2}\right)\left(M_{Q}^{2}-p^{2}\right)} \\
\frac{\Pi_{1}^{q, t}}{\lambda_{L, R}^{2} f^{2}} & =\frac{c_{+L, R} c_{-L, R}\left(M_{Q}^{2}+M_{S}^{2}-2 p^{2}\right)}{\left(p^{2}-M_{S}^{2}\right)\left(M_{Q}^{2}-p^{2}\right)} \\
& +\frac{\left(c_{+L, R}^{2}+c_{-L, R}^{2}\right)\left(M_{S}-M_{Q}\right)\left(M_{S}+M_{Q}\right)}{2\left(p^{2}-M_{S}^{2}\right)\left(M_{Q}^{2}-p^{2}\right)} \\
\frac{M_{1}^{t}}{\lambda_{L} \lambda_{R} f^{2}} & =\frac{M_{Q}^{2} M_{S}\left(c_{-L}-c_{+L}\right)\left(c_{-R}-c_{+R}\right)}{2\left(p^{2}-M_{Q}^{2}\right)\left(p^{2}-M_{S}^{2}\right)} \\
& -\frac{M_{S}^{2} M_{Q}\left(c_{-L}+c_{+L}\right)\left(c_{-R}+c_{+R}\right)}{2\left(p^{2}-M_{Q}^{2}\right)\left(p^{2}-M_{S}^{2}\right)} \\
& +\frac{M_{Q}\left(c_{-L}+c_{+L}\right)\left(c_{-R}+c_{+R}\right) p^{2}}{2\left(p^{2}-M_{Q}^{2}\right)\left(p^{2}-M_{S}^{2}\right)} \\
& -\frac{M_{S}\left(c_{-L}-c_{+L}\right)\left(c_{-R}-c_{+R}\right) p^{2}}{2\left(p^{2}-M_{Q}^{2}\right)\left(p^{2}-M_{S}^{2}\right)} \tag{54}
\end{align*}
$$

Vh structure from symmetry

000
 $S O(5)_{V^{\prime}}$

UV finite

c_{+L} is turned off, Higgs shift symmetry $h^{\hat{a}} \rightarrow h^{\hat{a}}+\alpha^{\hat{a}}$
$\Psi_{+L} \rightarrow g_{L}^{\prime} \Psi_{+L}$
$\Psi_{+R} \rightarrow V g_{L}^{\prime} \Psi_{+R}$
subgroup of
transformation on the left
$\left|\lambda_{L} \lambda_{R}\right|^{2} c_{+L}^{2} c_{+R}^{2} f^{4}\left(M_{1}-M_{2}\right)^{2} / \Lambda^{2}$.
Top mass square!

$$
\begin{equation*}
m_{t}=c_{+L} c_{+R}\left(M_{Q}-M_{S}\right) f^{2} /\left(2 M_{T} M_{T_{1}}\right) \tag{26}
\end{equation*}
$$

$S O(4)_{V}$
Log divergent

$$
\begin{equation*}
V_{L \xi} \sim\left|\lambda_{L}\right|^{2} c_{+L}^{2} f^{2}\left(M_{1}+M_{2}\right)\left(M_{1}-M_{2}\right) \log \Lambda^{2} \tag{24}
\end{equation*}
$$

Higgs potential tuning

$$
V_{f}(h) \simeq-\gamma_{f} s_{h}^{2}+\beta_{f} s_{h}^{4}, \quad \xi=\frac{\gamma_{f}}{2 \beta_{f}}
$$

$\gamma_{\text {div }}$ much smaller than $\beta_{\text {div }}$

$$
\begin{align*}
V_{\operatorname{div}} & =\frac{N_{c} M_{f}^{4}}{16 \pi^{2} g_{f}^{2}}\left[\left(\frac{c_{L}}{2} \epsilon_{L}^{2}-c_{R} \epsilon_{R}^{2}+c_{L L} \frac{\epsilon_{L}^{4}}{g_{f}^{2}}+c_{R R} \frac{\epsilon_{R}^{4}}{g_{f}^{2}}\right) s_{h}^{2}\right. \\
& \left.+\left(c_{L L}^{\prime} \frac{\epsilon_{L}^{4}}{g_{f}^{2}}+c_{R R}^{\prime} \frac{\epsilon_{R}^{4}}{g_{f}^{2}}\right) s_{h}^{4}\right] \\
& \equiv-\gamma_{\operatorname{div}} s_{h}^{2}+\beta_{\operatorname{div}^{2}} s_{h}^{4} \tag{34}
\end{align*}
$$

quadratic divergent parts
Large finite piece from \mid PI_I form factor (expansion over s_h or c_h) tends to make Igamma >> |beta

$$
\mathcal{O}\left(\epsilon_{L}^{2}\right) \text { and } \mathcal{O}\left(\epsilon_{R}^{2}\right)
$$

$c_{L} \sim c_{R} \sim \Lambda^{2}$

$$
c_{L L} \sim c_{L L}^{\prime} \sim c_{R R} \sim c_{R R}^{\prime} \sim \log \Lambda
$$

If UV divs cancels but finite remains $\Delta^{5+5} \simeq \frac{1}{\xi} \frac{g_{f}^{2}}{\epsilon^{2}} \quad$ Double tuning
G. Panico, M. Redi, A. Tesi, A. Wulzer, JHEP 1303, 053 (2013)

Tunnings in EWSB

$$
\begin{align*}
\left(V_{h}\right. & =c_{L R} \frac{N_{c} M_{f}^{4}}{16 \pi^{2}}\left(\frac{\epsilon_{L}^{2} \epsilon_{R}^{2}}{g_{f}^{4}}\right)\left[-s_{h}^{2}+s_{h}^{4}\right]+\mathcal{O}\left(\frac{\epsilon_{L}^{4} \epsilon_{R}^{4}}{g_{f}^{8}}\right) \\
& \simeq c_{L R} \frac{N_{c} M_{f}^{4}}{16 \pi^{2}}\left(\frac{y_{t}}{g_{f}}\right)^{2}\left[-s_{h}^{2}+s_{h}^{4}\right]+\mathcal{O}\left(\frac{y_{t}^{4}}{g_{f}^{4}}\right) \\
& \equiv-\gamma_{f} s_{h}^{2}+\beta_{f} s_{h}^{4} \tag{39}
\end{align*}
$$

Cancellation from the gauge sector

Maximalij symmetric case

$$
\xi=\frac{\gamma_{f}}{2 \beta_{f}}=0.5
$$

$$
\gamma_{g}=-\frac{9 f^{2} g^{2} m_{\rho}^{2} \log 2}{64 \pi^{2}}
$$

Assuming I st \& 2nd Weinberg sum rule, UV finite

$$
\Delta^{(5+5)}=\frac{\max \left(\left|\gamma_{f}\right|,\left|\gamma_{g}\right|\right)}{\left|\gamma_{f}+\gamma_{g}\right|} \simeq \max \left(\frac{1}{2 \xi}, \frac{1}{2 \xi}-1\right)=\frac{1}{2 \xi}(44)
$$

How to get 125 GeV Higgs?

OOO
$m_{t} \sim \sin \theta_{L} \sin \theta_{R}\left|M_{Q}-M_{S}\right| s_{h}$
Usually top is too heavy, difficult to get a light Higgs
θ_{L} and $\theta_{R} \quad$ minimal $\quad M_{Q}=-M_{S}$
$\min \left\{M_{T}, M_{T_{1}}\right\}=\min \left\{\frac{M_{S}}{\cos \theta_{L}}, \frac{M_{Q}}{\cos \theta_{R}}\right\} \quad$ minimal
$m_{H} \propto \min \left\{M_{T}, M_{T_{1}}\right\} m_{t} / f$

Numerical tuning

Scan

One free parameter except for f

Emergence of Maximal Symmetry

C. Csaki, T. Ma, J. Shu, J-H. Yu, arxiv:1810.07704

Why a maximal symmetry?

sounds like symmetry inflow

Ordinary case globa symmetry breaks into H at the boundary

Maximal symmetry: global symmetry breaks into G_\{V'\} at the boundary

Integrating out the bulk from this boundary (composite) preserve this global symmetry and transmitted it to the other boundary (SM elecmentary)

How to realize a maximal

symmetry?

000

How to realize a maximal

symmetry?

Why a maximal symmetry?

Boundary fermion:

Why a maximal symmetry?

 OOO

$$
\begin{align*}
\mathcal{L}_{f} & =\bar{q}_{L} i \not \supset q_{L}+\sum_{i=2}^{N} \bar{\Psi}_{i} i \not D_{i} \Psi_{i}+\bar{t}_{R} i \not D t_{R} \\
& -\epsilon_{1} \bar{\Psi}_{q_{L}} U_{1} \Psi_{2 R}-\sum_{j=2}^{N-1} \epsilon_{j} \bar{\Psi}_{j L} U_{j} \Psi_{j+1 R} \\
& -\sum_{i=2}^{N} M_{i} \bar{\Psi}_{i L} \Psi_{i R}-\epsilon_{N} \bar{\Psi}_{N L} \mathcal{H}^{\prime} t_{R}+\text { h.c. } \tag{7}
\end{align*}
$$

Extra dimension case:

$U\left(R, R^{\prime}\right)=\operatorname{Exp}\left(i \frac{-\sqrt{2} \pi^{\hat{a}} T^{\hat{a}}}{f}\right)$,

$$
\begin{aligned}
\mathcal{L}_{e f f} & =\bar{\chi}_{L}^{\prime} \not p \Pi_{L}(p) \chi_{L}^{\prime}+\bar{t}_{R} \not p t_{R} \\
& +\left(M(p) \bar{\chi}_{L}^{\prime} \mathcal{H} t_{R}+\text { h.c. }\right)
\end{aligned}
$$

After integrating out the bulk

$$
\begin{aligned}
\mathcal{L}_{H} & =\bar{\chi}_{L} \not p \Pi^{L}(\tilde{m}) \chi_{L}-\bar{\psi}_{R} p \Pi^{R}(\tilde{m}) \psi_{R} \\
& +M^{L R}\left(\bar{\chi}_{L} V \psi_{R}+\bar{\psi}_{R} V \chi_{L}\right),
\end{aligned}
$$

Comment

What I feel interesting or critical is that:

The boundary symmetry completely controls the bulk pNGB properties, in particular, the UV sensitivity of the pNGB Coleman- Weinberg potential

I wonder if there is a application in condense matter physics?

MS in the lattice can also be applied to low-dim condense matter system (Bilayer Quantum Hall System?)

Naturalness Sum rules

C. Csaki, F. Freitas, L. Huang, T. Ma, J. Shu, M. Perelstein, arxiv:1811.01961

Test and predictions

000
Top kinetic terms: no corrections from Higgs

$$
\begin{array}{r}
M_{t}(h) \sim \sin \left(\frac{2 h}{f}\right)\left(1+\frac{1}{2} \sin ^{2}(h / f)\left(\Pi_{1}^{q}(0)-\Pi_{1}^{t}(0)\right)\right) \\
\text { C. Csaki, T. Ma, J. Shu., } 1702.00405 \\
\text { D. Liu, I. Low, C. Wagner, } 1703.07791
\end{array}
$$

However, the ggh coupling only scale with the derivative of the first part.

Maximal Symmetry limit

 100 TeV perhaps th I\%
Test and predictions

OOO
Find the top partner resonance (charge 2/3), sum rule of diagonal Higgs Yukawa \& mass

Mass eigenstates

C. Csaki, T. Ma, Phys.Rev.Lett. 119 (2017) no13,

$$
\operatorname{Tr}\left[Y_{m} M_{D}\right]=0+\mathcal{O}\left(v^{2}\right)
$$

C-R Chen, J. Hajer, T. Liu, I. Low, H. Zhang, JHEP 1709 (2017) 129
No quadratic div
C. Csaki, T. Ma, J. Shu., Phys.Rev.Lett. 119 (2017) no13, 131803

$$
M_{Q}+M_{S}=0 \quad \text { Lightest exotic charge (5/3) }
$$

Gauge Sum rules

000

Quadratic divergence

$$
\operatorname{Tr}\left[g_{V V h}\right]=0+\mathcal{O}\left(\tilde{v}^{2} / f^{2}\right) .
$$

Log divergence

$$
\operatorname{Tr}\left[g_{V V h} M_{V}^{2}\right]=0+\mathcal{O}\left(\tilde{v}^{2} / f^{2}\right),
$$

SUSY Case

$$
\operatorname{Tr}\left[g_{S S h}\right]-2 \operatorname{Tr}\left[Y_{M} M_{D}^{\dagger}+M_{D} Y_{M}^{\dagger}\right]+3 \operatorname{Tr}\left[g_{V V h}\right]=0
$$

$$
\operatorname{Tr}\left[g_{S S h}\right]-4 \operatorname{Tr}\left[Y_{M} M_{D}\right]+3 \operatorname{Tr}\left[g_{V V h}\right]=0 .
$$

Quadratic divergence
Top sector/stop sector
Gauge/gaugino/Higgs/Higgsino sector

$$
\sum_{i} g_{\tilde{t}_{i} \tilde{t}_{i} h}-4 y_{t} m_{t}=0
$$

$$
\begin{aligned}
& 4 \sum_{i}\left(y_{C_{i}^{+} C_{i}^{-} h} m_{C_{i}}+y_{N_{i} N_{i} h} m_{N_{i}}\right)-3\left(g_{W^{+} W^{-} h}+g_{Z Z h}\right) \\
& -\sum_{i}\left(g_{H_{i}^{0} H_{i}^{0} h}+g_{H_{i}^{+} H_{i}^{-} h}\right)-g_{h h h}=0
\end{aligned}
$$

Non-SUSY Case: Collider

Non-susy case done with signs! See the talk tomorrow!

The build-in twin Higgs (Trigonometric Parity)

C. Csaki, T. Ma, J. Shu., Phys.Rev.Lett. 121 (2018) no23, 231801

Why twin Higgs?

Z. Chacko, H.-S. Goh, R. Harnik, Phys.Rev.Lett. 96 (006) 231802

The key reason is that we still do not see the colored top partner yet!
Colored top partners are the most sensitive probe of composite Higgs models
Proved upper limit of lightest top partners for given symmetry breaking scale f

Light Higgs Light Top Partners
D. Marzocca, M. Serone, J. Shu., JHEP 1208, 013 (2012) O.Matsedonskyi, G. Panico, A. Wulzer, JHEP 1301, 164 (2013)

EW charged twin top almost have zero LHC bounds See for instance Neutral Naturalness N. Craig, A.Katz, M.Strassler, R. Sundrum, JHEP 1507, 105 (2015)

Why composite twin Higgs?

OOO
Funny trigonometric parity $s_{h} \leftrightarrow c_{h}$.
M. Geller, O.Telem, PRL 114, 191801 (2015)
R. Barbieri, D. Greco, R. Rattazzi, A. Wulzer, JHEP 1508, 161 (2015)

Why Twin Higgs? M. Low, A. Tesi, L.T. Wang, PRD 91, 095012 (2015) Highly constrained by LEP
O The radiatively generated Higgs potential
O universal prediction on Higgs couplings (Like pion soft theorem)

If the strong dynamics triggers the breaking G / H, pNGB is a composite particle.

Trigonometric Parity as the

build-in Twin Parity

However, the goldstone itself does have the spontaneous broken symmetry!
The symmetry of the G/H coset space manifold!
Inside any coset space manifold, there is a trigonometric parity
Physical higgs has a shift symmetry in the corresponding unbroken direction

$$
\pi^{i} / f \rightarrow \pi^{i} / f+\epsilon^{i} .
$$

Higgs parity:

$$
\pi^{i} \rightarrow-\pi^{i}
$$

C. Csaki, T. Ma, J. Shu., Phys.Rev.Lett. 121 (2018) no23, 231801

$$
\begin{aligned}
& \frac{\pi^{i}}{f} \rightarrow-\frac{\pi^{i}}{f}+\frac{\pi}{2} \\
& U(1) \sim S O(2)
\end{aligned}
$$

$S O(N+1) / S O(N) S_{U=}^{N}$

Adding matter fields

The matter fields have to conserve such a build-in trigonometric parity

$$
\Psi_{Q_{L}}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
b_{L} \\
-i b_{L} \\
t_{L} \\
i t_{L} \\
0 \\
0
\end{array}\right)
$$

Exchange the coordinates in the 3rd and 5th, 4th and 6th row

$y_{t}=\tilde{y}_{t}$
$\Psi_{Q_{L}} \leftrightarrow P \Psi_{\tilde{t}_{L}}, \quad t_{R} \leftrightarrow \tilde{t}_{R}, \quad \Sigma \rightarrow P \Sigma$

Fermion Lag

The top and bottom sector

$$
\begin{aligned}
\mathcal{L}_{e f f}^{t} & =\bar{b}_{L} p \Pi_{0}^{q}(p) b_{L}+\bar{t}_{L} p\left(\Pi_{0}^{q}(p)+\Pi_{1}^{q}(p) c_{h}^{2}\right) t_{L} \\
& +\bar{t}_{R} p \Pi_{0}^{t}(p) t_{R}+\tilde{t}_{L} p\left(\Pi_{0}^{q}(p)+\Pi_{1}^{q}(p) s_{h}^{2}\right) \tilde{t}_{L} \\
& +\tilde{\tilde{t}}_{R} p \Pi_{0}^{t}(p) \tilde{t}_{R}-\frac{i M_{1}^{t}(p)}{\sqrt{2}}\left(\bar{t}_{L} t_{R} s_{h}+\overline{\tilde{t}}_{L} \tilde{t}_{R} c_{h}\right)+\text { h.c. }
\end{aligned}
$$

A UV Completion

$S O(6) / S O(5) \simeq S U(4) / S p(4)$

The latter has the fermion condensation

	$S p(2 N)$	$S U(2)_{L}$	$U(1)_{Y}$	$S U(3)_{c}$	$U(1)_{\eta}$
$\left(\psi_{1}, \psi_{2}\right)$	\square	\square	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
ψ_{3}	\square	$\mathbf{1}$	$-\frac{1}{2}$	$\mathbf{1}$	$-\mathbf{1}$
ψ_{4}	\square	$\mathbf{1}$	$\frac{1}{2}$	$\mathbf{1}$	$-\mathbf{1}$

Gauge sector automatically satisfy the Weinberg sum rule Lowest chiral breaking operators at UV: 4-fermions dim 6.

$\mathrm{SU}(4) / \mathrm{Sp}(4)$ matter content

$$
\Psi_{Q_{L}}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
\mathbf{0} & Q \\
-Q^{T} & \mathbf{0}
\end{array}\right) \text { and } \Psi_{\tilde{t}_{L}}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
i \tilde{t}_{L} \sigma^{2} & 0 \\
0 & \mathbf{0}
\end{array}\right)
$$

$$
U=\left(\begin{array}{cc}
c^{\prime} \mathbb{1}_{2} & i \sigma^{2} h s^{\prime} \\
i \sigma^{2} h s^{\prime} & c^{\prime} \mathbb{1}_{2}
\end{array}\right) \eta: i\left(\psi_{1} \psi_{2}+\psi_{3} \psi_{4}-\psi_{1}^{c} \psi_{2}^{c}-\psi_{3}^{c} \psi_{4}^{c}\right)
$$

$$
\begin{align*}
\mathcal{L}_{e f f}^{t} & =\bar{b}_{L} p \Pi_{0}^{q}(p) b_{L}+\bar{t}_{L} p p\left(\Pi_{0}^{q}(p)-2 \Pi_{1}^{q}(p) s_{h}^{2}\right) t_{L} \\
& +\bar{t}_{R} p \Pi_{0}^{t}(p) t_{R}+\tilde{\tilde{t}}_{R} p \Pi_{0}^{t}(p) \tilde{t}_{R} \\
& +\overline{\tilde{t}}_{L} p p\left(\Pi_{0}^{q}(p)-2 \Pi_{1}^{q}(p) c_{h}^{2}\right) \tilde{t}_{L} \\
& -\sqrt{2} M_{1}^{t}(p)\left(\bar{t}_{L} t_{R} s_{h}+\overline{\tilde{t}}_{L} \tilde{t}_{R} c_{h}\right)+\text { h.c. } \tag{36}
\end{align*}
$$

Extension for Composite Top

Extension for

 Composite$$
\begin{aligned}
\mathcal{L} & =f \bar{\Psi}_{L} U\left(\epsilon_{5 L} \Psi_{5 R}+\epsilon_{1 L} \Psi_{1 R}\right)+f \epsilon_{R} \bar{\Psi}_{R} \Psi_{1 L} \\
& +M_{5} \bar{\Psi}_{5 L} \Psi_{5 R}+M_{1} \bar{\Psi}_{1 L} \Psi_{1 R}+h . c,
\end{aligned}
$$

$$
\begin{aligned}
& \Psi_{Q}=\left(\begin{array}{c}
i B-i X_{5 / 3} \\
B+X_{5 / 3} \\
T+X_{2 / 3} \\
-T+X_{2 / 3} \\
i T_{+}^{\prime}-i T_{-}^{\prime} \\
0
\end{array}\right) \quad \Psi_{S}=\left(\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
0 \\
T_{+}^{\prime}+T_{-}^{\prime}
\end{array}\right) \\
& \tilde{\Psi}_{Q}=\left(\begin{array}{c}
i \tilde{B}_{-1}-i \tilde{X}_{1} \\
\tilde{B}_{-1}+\tilde{X}_{1} \\
\tilde{T}_{0}+\tilde{X}_{0} \\
-\tilde{T}_{0}+\tilde{X}_{0} \\
i \tilde{T}_{+}^{\prime}-i \tilde{T}_{-}^{\prime} \\
0
\end{array}\right) \quad \tilde{\Psi}_{S}=\left(\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
0 \\
\tilde{T}_{+}^{\prime}+\tilde{T}_{-}^{\prime}
\end{array}\right)
\end{aligned}
$$

Higgs potential

$$
V_{g}=\gamma_{g} s_{h}^{2} \quad V_{f}=\gamma_{f}\left(-s_{h}^{2}+s_{h}^{4}\right),
$$

$$
V=V_{g}+V_{f}=-\gamma s_{h}^{2}+\beta s_{h}^{4},
$$

$$
\gamma=\gamma_{f}-\gamma_{g} \text { and } \beta=\gamma_{f}
$$

$$
\begin{aligned}
V_{f} & \simeq c^{\prime} \frac{N_{c} M_{f}^{4}}{16 \pi^{2}}\left(\frac{y_{t}}{g_{f}}\right)^{4}\left[-s_{h}^{2}+s_{h}^{4}\right] \\
& \simeq c^{\prime} \frac{N_{c} f^{4}}{16 \pi^{2}} y_{t}^{4}\left[-s_{h}^{2}+s_{h}^{4}\right],
\end{aligned}
$$

Notice top
Yukawa 4th power

Higgs potential

Novel six top signals

$$
t^{\prime} \rightarrow B_{\mu}^{\prime} t \rightarrow t \bar{t} t
$$

Completely new and novel channels

H-Y. Han, L. Huang, T. Ma, J. Shu, T. Tait, Y.C. Wu, arxiv:1812.11286

Future Prospects

O Understanding models of EWSB (real progress after 2000)

EFT approach to EWSB, connect collider physics with true natural of EWSB

Theoretical Framework can be applied to many other aspects? (Inflation, axion, condensed matter?)

Backup

 slice
Discreet Parities

Hidden additional Z_{2} forbids the turing term: (like composite twin Higgs)
M. Geller, O.Telem, PRL 114, 191801 (2015)
R. Barbieri, D. Greco, R. Rattazzi, A. Wulzer, JHEP 1508, 161 (2015)
M. Low, A. Tesi, L.T. Wang, PRD 91, 095012 (2015)

$s_{h} \Leftrightarrow-c_{h}$ in the Higgs potential

Can be realized under the following transformation

$$
\begin{align*}
\Psi_{+L} & \rightarrow P_{1} \Psi_{+L}, \Psi_{+R} \rightarrow V P_{1} V \Psi_{+R}, U \rightarrow V U V P_{1} V \\
\Psi_{q_{L}} & \rightarrow V \Psi_{q_{L}}=\Psi_{q_{L}}, \Psi_{t_{R}} \rightarrow P_{2} \Psi_{t_{R}}=\Psi_{t_{R}} \tag{28}
\end{align*}
$$

$$
P_{1}=\operatorname{diag}\left(1_{3 \times 3}, \sigma_{1}\right), P_{2}=\operatorname{diag}\left(1_{3 \times 3},-\sigma_{3}\right)
$$

Vector bosons

$\mathrm{SO}(5) / \mathrm{SO}(4)$

Consider one vector meson and one axi-vector meson

$$
\begin{array}{ll}
\rho_{\mu} \equiv \mathbf{6} & \rho_{\mu} \rightarrow h \rho_{\mu} h^{\dagger}+\frac{i}{g_{\rho}} h \partial_{\mu} h^{\dagger} \\
a_{\mu} \equiv \mathbf{4} & a_{\mu} \rightarrow h a_{\mu} h^{\dagger}
\end{array}
$$

The Lag based on HLS

$$
\begin{align*}
\mathcal{L}^{v} & =-\frac{1}{4} \operatorname{Tr}\left[\rho_{\mu \nu} \rho^{\mu \nu}\right]+\frac{f_{\rho}^{2}}{2} \operatorname{Tr}\left[\left(g_{\rho} \rho_{\mu}-E_{\mu}\right)^{2}\right] \\
\mathcal{L}^{a} & =-\frac{1}{4} \operatorname{Tr}\left[a_{\mu \nu} a^{\mu \nu}\right]+\frac{f_{a}^{2}}{2 \Delta^{2}} \operatorname{Tr}\left[\left(g_{a} a_{\mu}-\Delta d_{\mu}\right)^{2}\right] \\
\mathcal{L}_{\text {kin }} & =\frac{f^{2}}{4} \operatorname{Tr}\left[d_{\mu} d^{\mu}\right] \tag{3}
\end{align*}
$$

$$
\begin{aligned}
& \rho_{\mu \nu}=\partial_{\mu} \rho_{\nu}-\partial_{\nu} \rho_{\mu}-i g_{\rho}\left[\rho_{\mu}, \rho_{\nu}\right], \\
& a_{\mu \nu}=\Delta_{\mu} a_{\nu}-\Delta_{\nu} a_{\mu}, \quad \Delta=\partial-i E .
\end{aligned}
$$

$$
m_{\rho}^{2}=g_{\rho}^{2} f_{\rho}^{2} \quad m_{a}^{2}=\frac{g_{a}^{2} f_{a}^{2}}{\Delta^{2}}
$$

Δ is a free parameter

Vector bosons

Purther simplified as

$$
\begin{aligned}
\mathcal{L}= & \frac{f^{2}+2 f_{a}^{2}}{4} \operatorname{Tr}\left[d_{\mu} d^{\mu}\right]-m_{a} f_{a} \operatorname{Tr}\left[a_{\mu}\left(E_{\mu}+d_{\mu}\right)\right]+\frac{g_{a}^{2} f_{a}^{2}}{2 \Delta^{2}} \operatorname{Tr}\left[a_{\mu} a^{\mu}\right] \\
& +\frac{f_{\rho}^{2}}{2} \operatorname{Tr}\left[E_{\mu} E^{\mu}\right]-m_{\rho} f_{\rho} \operatorname{Tr}\left[\rho_{\mu}\left(E_{\mu}+d_{\mu}\right)\right]+\frac{g_{\rho}^{2} f_{\rho}^{2}}{2} \operatorname{Tr}\left[\rho_{\mu} \rho^{\mu}\right](7)
\end{aligned}
$$

For symmetric coset space, G-invariant building blocks

$$
\rho_{\mu} \pm a_{\mu} \quad E_{\mu} \pm d_{\mu}
$$

$$
\mathcal{L}=f_{+}^{2} \operatorname{Tr}\left[\left(d_{\mu}+E_{\mu}\right)^{2}\right]+f_{-}^{2} \operatorname{Tr}\left[V\left(E_{\mu}+d_{\mu}\right) V\left(E^{\mu}+d_{\mu}\right)\right]
$$

$$
-m_{+}^{2} \operatorname{Tr}\left[\left(\rho_{\mu}+a_{\mu}\right)\left(d_{\mu}+E_{\mu}\right)\right]-m_{-}^{2} \operatorname{Tr}\left[V\left(\rho_{\mu}+a_{\mu}\right) V\left(d_{\mu}+E_{\mu}\right)\right]
$$

$$
f_{+}^{2}=\frac{f^{2}+2 f_{a}^{2}+2 f_{\rho}^{2}}{8},
$$

$$
+\frac{m_{\rho}^{2}+m_{a}^{2}}{4} \operatorname{Tr}\left[\left(\rho_{\mu}+a_{\mu}\right)\left(\rho_{\mu}+a_{\mu}\right)\right]
$$

$$
m_{+}^{2}=\frac{m_{\rho} f_{\rho}+m_{a} f_{a}}{2}, m_{-}^{2}=\frac{m_{\rho} f_{\rho}-m_{a} f_{a}}{2}
$$

$$
\begin{equation*}
+\frac{m_{\rho}^{2}-m_{a}^{2}}{4} \operatorname{Tr}\left[V\left(\rho_{\mu}+a_{\mu}\right) V\left(\rho_{\mu}+a_{\mu}\right)\right] \tag{8}
\end{equation*}
$$

$$
f_{-}^{2}=\frac{f^{2}+2 f_{a}^{2}-2 f_{\rho}^{2}}{8}
$$

Vector bosons

OOO Again, theory is made of one G-invariant adjoints for one G and also V
$S O(5)_{1} \quad U^{\dagger} D_{\mu} U \rightarrow \Omega_{1} U^{\dagger} D_{\mu} U \Omega_{1}^{\dagger}$ Higgs shift sym lies in $[S O(5) / S O(4)]_{1}$
$S O(5)_{2} \rho_{\mu}+a_{\mu} \rightarrow \Omega_{2}\left(\rho_{\mu}+a_{\mu}\right) \Omega_{2}^{\dagger}$
Automatically get the Weinberg sum rules
CYB in the I st line $V_{g} \sim g_{0}^{2} f_{-}^{2} \Lambda^{2}$
$f_{-}=0$ IstWS
CYB in the 2nd line $V_{g} \sim g_{0}^{2} m_{+}^{2} m_{-}^{2} \log \Lambda^{2} \quad m_{-}=0$ 2nd WS
CYB in the 3rd line $V_{g} \sim g_{0}^{2} m_{+}^{4}\left(m_{\rho}^{2}-m_{a}^{2}\right) / \Lambda^{2} \quad m_{\rho} \approx m_{a}$

Higgs as pNGB

Consider the minimal group G / H

$S O(5) \times U(1)_{X} \rightarrow S O(4) \times U(1)_{X}$
K. Agashe, R. Contino, A. Pomarol, NPB 7 I9 (2005) I65
Λ
at the scale $\mathrm{f}>\mathbf{V} \quad \xi \equiv \frac{v^{2}}{f^{2}}$
There are four NGBs: $\pi^{\hat{a}}$, with $\hat{a}=1,2,3,4$.
$f \quad S O(5) / S O(4)$
They transform as a 4 of $S O(4)$

$$
(2,2) \text { of } S U(2) \times S U(2) \sim S O(4) .
$$

$$
Y=T_{3 R}+X
$$

$$
v=f \sin (\langle\pi\rangle / f)
$$

$S O(4) / S O(3)$
$S U(2)_{\mathrm{L}} \times U(1)_{\mathrm{Y}} \subset S U(2)_{\mathrm{L}} \times S U(2)_{\mathrm{R}} \times U(1)_{\mathrm{x}} \sim S O(4)^{\prime} \times U(1)_{\mathrm{x}}$
See other holographic models based on SU(3)/SU(2) R. Contino, Y. Nomura, A. Pomarol, NPB 67 I (2003) I4

CCWZ of GCHM

000

 pNGB matrix:$$
U=\exp \left(i \frac{\sqrt{2}}{f} h^{\hat{a}} T^{\hat{a}}\right)
$$

The CCWZ transformation
C.G. Callan, S.R. Coleman, J.Wess, B. Zumino, PR I77 (I969) 2247

$$
U \rightarrow g U h\left(h^{\hat{a}}, g\right)^{\dagger}
$$

$$
\hat{a}=1,2,3,4
$$

$$
i U^{\dagger} D_{\mu} U=\hat{d}_{\mu}^{\hat{a}} T^{\hat{a}}+\hat{E}_{\mu} T^{a}
$$

SM gauge fields
Leading order chiral Lag

CCWZ of GCHM

OOO

$$
i U^{\dagger} D_{\mu} U=\hat{d}_{\mu}^{\hat{a}} T^{\hat{a}}+\hat{E}_{\mu} T^{a}
$$

SM gauged
$\hat{d}_{\mu}=-\frac{\sqrt{2}}{f}\left(\widehat{\left.D_{\mu} h\right)+\ldots}\right.$

$$
\hat{E}_{\mu}=g_{0} A_{\mu}+\frac{i}{f^{2}}\left(h \stackrel{\leftrightarrow}{D_{\mu}} h\right)+\ldots
$$

Transform like a gauge field

$$
m_{W}=\frac{g f}{2} \sin \frac{\langle h\rangle}{f} \equiv \frac{g v}{2} \quad s_{h}=\sin \frac{\langle h\rangle}{f}, \quad \xi \equiv s_{h}^{2}
$$

Higgs physics

01010

$$
\begin{aligned}
& f^{2} \sin ^{2} \frac{h}{f}=f^{2}\left[\sin ^{2} \frac{\langle h\rangle}{f}+2 \sin \frac{\langle h\rangle}{f} \cos \frac{\langle h\rangle}{f}\left(\frac{h}{f}\right)\right. \\
&\left.+\left(1-2 \sin ^{2} \frac{\langle h\rangle}{f}\right)\left(\frac{h}{f}\right)^{2}+\ldots\right] \\
&= v^{2}+2 v \sqrt{1-\xi} h+(1-2 \xi) h^{2}+\ldots
\end{aligned}
$$

W boson mass

modification of hVV coupling

$$
a=\sqrt{1-\xi} \quad b=1-2 \xi
$$

Similarly for fermions.

$$
\begin{array}{lll}
m_{f}(h) \propto \sin \left(\frac{2 h}{f}\right) & c=\frac{1-2 \xi}{\sqrt{1-\xi}} & 5,10 \\
m_{f}(h) \propto \sin \left(\frac{h}{f}\right) & c=\sqrt{1-\xi} & \\
\text { Spinorial } 4
\end{array}
$$

电弱对称破缺机制

Higgs 势能：辐射修正

$$
V_{f}(h) \simeq-\gamma_{f} s_{h}^{2}+\beta_{f} s_{h}^{4},
$$

$$
\sin ^{2}\langle H\rangle / f=\xi \ll 1
$$

$$
m_{H}^{2}=8 \xi(1-\xi) \beta .
$$

$$
\begin{aligned}
& \gamma_{g}=-\frac{3}{8(4 \pi)^{2}} \int_{0}^{\infty} d p_{E}^{2} p_{E}^{2}\left(\frac{3}{\Pi_{0}}+\frac{c_{X}^{2}}{\Pi_{B}}\right) \Pi_{1}, \\
& \beta_{g}=-\frac{3}{64(4 \pi)^{2}} \int_{\mu_{g}^{2}}^{\infty} d p_{E}^{2} p_{E}^{2}\left(\frac{2}{\Pi_{0}^{2}}+\left(\frac{1}{\Pi_{0}}+\frac{c_{X}^{2}}{\Pi_{B}}\right)^{2}\right) \Pi_{1}^{2} .
\end{aligned}
$$

规范波色子贡献

$$
\begin{aligned}
& \gamma_{f}=\frac{2 N_{c}}{(4 \pi)^{2}} \int_{0}^{\infty} d p_{E}^{2} p_{E}^{2}\left(\frac{\Pi_{1 Q}}{\Pi_{Q}}+\frac{\Pi_{1 S}}{\Pi_{S}}+\frac{\Pi_{Q S}^{2}}{p_{E}^{2} \Pi_{Q} \Pi_{S}}\right), \\
& \beta_{f}=\frac{N_{c}}{(4 \pi)^{2}} \int_{\mu_{f}^{2}}^{\infty} d p_{E}^{2} p_{E}^{2}\left(\left(\frac{\Pi_{Q S}^{2}}{p_{E}^{2} \Pi_{Q} \Pi_{S}}+\frac{\Pi_{1 Q}}{\Pi_{Q}}+\frac{\Pi_{1 S}}{\Pi_{S}}\right)^{2}-\frac{2\left(p_{E}^{2} \Pi_{{ }_{Q}} \Pi_{1 S}-\Pi_{Q S}^{2}\right)}{p_{E}^{2} \Pi_{Q} \Pi_{S}}\right) .
\end{aligned}
$$

$$
M_{t}^{2}\left(q^{2},\langle h\rangle\right)=\frac{\left|\Pi_{t_{L} t_{R}}\left(q^{2},\langle h\rangle\right)\right|}{\sqrt{\Pi_{t_{L}}\left(q^{2},\langle h\rangle\right) \Pi_{t_{R}}\left(q^{2},\langle h\rangle\right)}}
$$

Top 夸克质量

Higgs产生和衰变

Higgs物理

$-$

Top耦合为负的情况不再存在

