Constrain HZZ anomalous couplings in Higgs off-shell regions

You-kai Wang In collaboration with Hua-rong He & Xia Wan

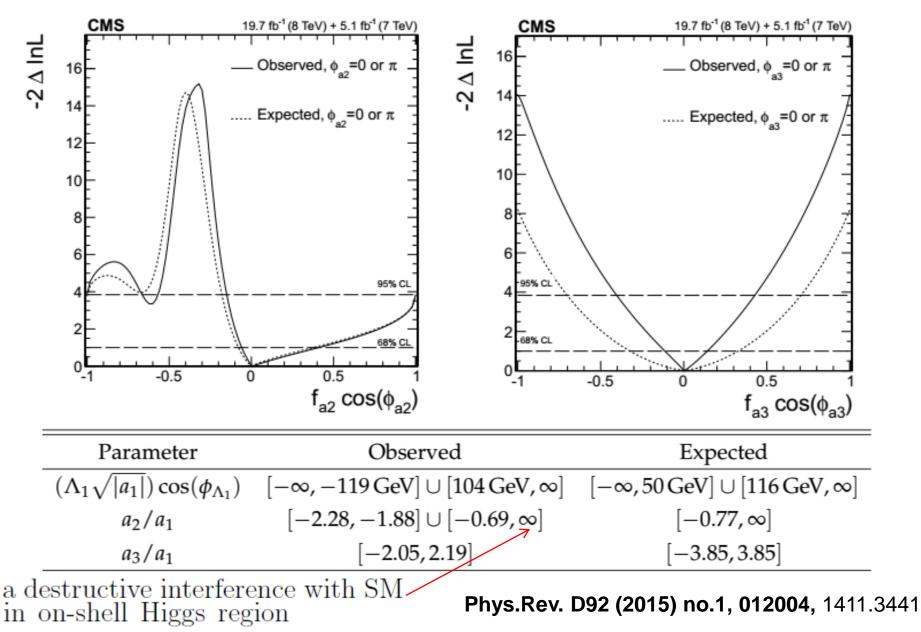
Shaanxi Normal University

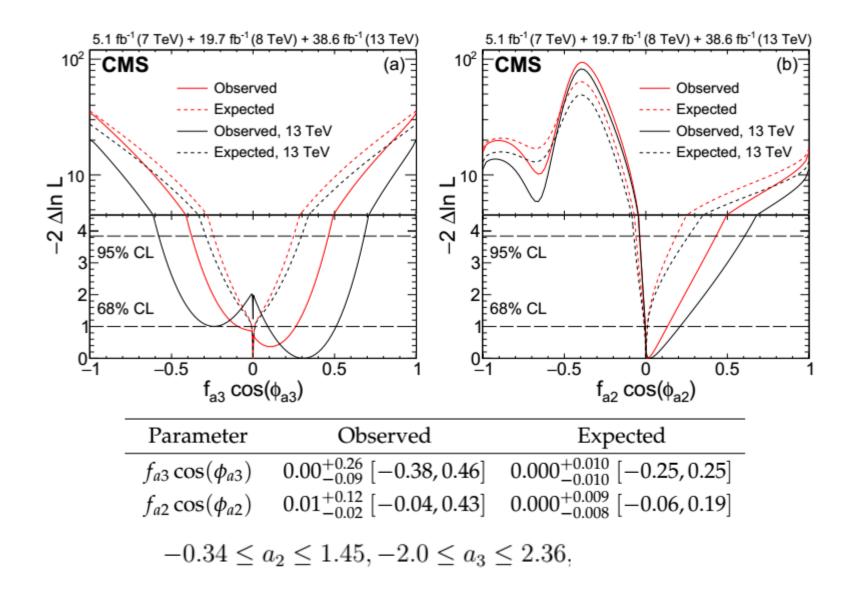
contents

HZZ anomalous couplings experiments The effective model Helicity amplitude calculation Numerical results Summary

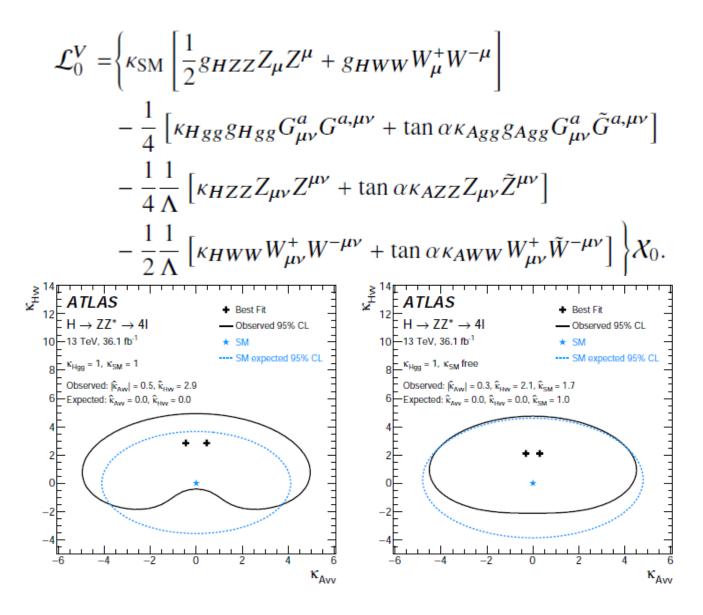
HZZ anomalous couplings

matrix element likelihood approach


$$L(\text{HVV}) \sim a_1 \frac{m_Z^2}{2} \text{HZ}^{\mu} Z_{\mu} - \frac{\kappa_1}{(\Lambda_1)^2} m_Z^2 \text{HZ}_{\mu} \Box Z^{\mu} - \frac{1}{2} a_2 \text{HZ}^{\mu\nu} Z_{\mu\nu} - \frac{1}{2} a_3 \text{HZ}^{\mu\nu} \tilde{Z}_{\mu\nu}$$


The effective fractional cross sections f_{ai} and phases ϕ_{ai}

$$f_{ai} = |a_i|^2 \sigma_i / \sum |a_j|^2 \sigma_j, \text{ and } \phi_{ai} = \arg(a_i/a_1)$$
$$\left|\frac{a_i}{a_1}\right| = \sqrt{\frac{f_{ai}}{f_{a1}}} \sqrt{\frac{\sigma_1}{\sigma_i}}$$


 $Z_{\mu'\nu'} = \partial_{\mu'}Z_{\nu'} - \partial_{\nu'}Z_{\mu'} \qquad \tilde{Z}_{\mu'\nu'} = \frac{1}{2}\epsilon_{\mu'\nu'\rho\sigma}Z^{\rho\sigma}$

The experimental measurements in Higgs on-shell region

Phys.Lett. B775 (2017) 1-24, 1707.00541

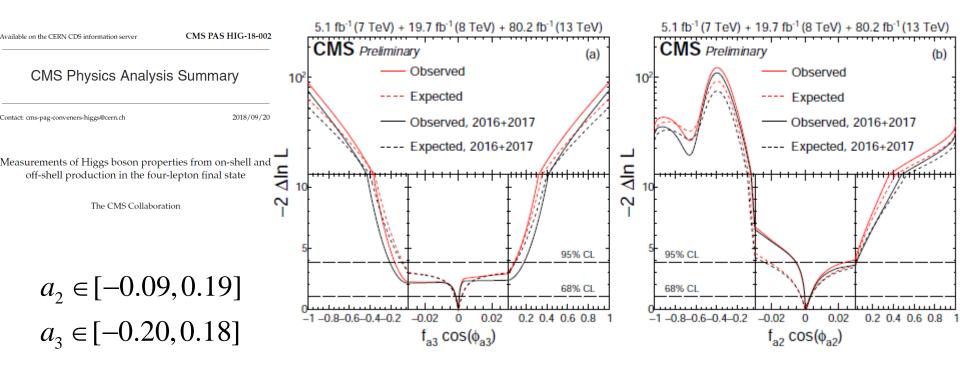
JHEP 03 (2018) 095

Higgs off-shell region physics

In gluon fusion production mode, the off-shell production cross section has been shown to be sizeable at high ZZ invariant

mass

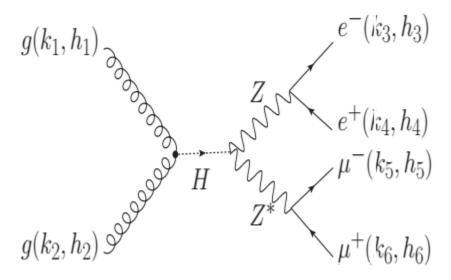
constraining the Higgs boson width from off-shell production and decay to ZZ(4I)


fb⁻¹ (8 TeV) + 5.1 fb⁻¹ (7 TeV) Events / 10 GeV 60 Data $qq+VV \rightarrow ZZ$ $q\overline{q} \rightarrow ZZ$ 50 Z+X Ge/ 30 20 10 120 130 m, (GeV) 200 300 400 500 600 700 800 100m₄ (GeV)

CMS PAS HIG-14-002

1307.4935

interference effects from the


anomalous HZZ couplings in on-shell and off-shell Higgs regions 7

The gg \rightarrow ZZ/Z $\gamma^* \rightarrow 4\ell$ background process is simulated with MCFM 7.0 [18, 50–52]. The VBF and triple-gauge-boson (VVV) background is simulated with PHANTOM [53]. Both the MCFM and PHANTOM generators allow one to model the H boson signal, background, and their interference in the off-shell production. However, this does not allow modeling of anomalous interactions. Therefore, a dedicated program based on signal modeling, which includes anomalous interactions, from JHUGEN and background modeling from MCFM [18, 52] has been developed for both gluon fusion and VBF with triple-gauge-boson production. This program is included within the JHUGEN and MELA packages. See Ref. [22] for details. A large number of samples with anomalous couplings have been generated with these packages, including re-weighting from any hypothesis to the others.

 $\Gamma^{\mu\nu}(k,k') = i\frac{2}{v}\sum_{i=1}^{s} a_i \Gamma^{\mu\nu}_i(k,k') = i\frac{2}{v} [a_1 M_Z^2 g^{\mu\nu} + 2a_2 (k^{\nu} k'^{\mu} - k \cdot k' g^{\mu\nu}) + 2a_3 \epsilon^{\mu\nu\rho\sigma} k_\rho k'_\sigma]$

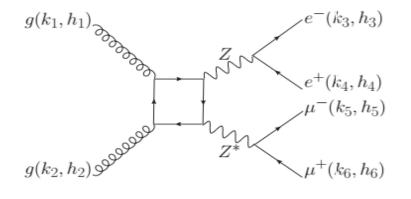
Helicity amplitude calculation

Helicity amplitude for Higgs mediated process

$$\begin{aligned} \mathcal{A}^{gg \to H \to ZZ \to 2e2\mu} (1_g^{h_1}, 2_g^{h_2}, 3_{e^-}^{h_3}, 4_{e^+}^{h_4}, 5_{\mu^-}^{h_5}, 6_{\mu^+}^{h_6}) \\ &= [a_1 \mathcal{A}_{\rm SM}^H + a_2 \mathcal{A}_{CP-\text{even}}^H + a_3 \mathcal{A}_{CP-\text{odd}}^H] (1_g^{h_1}, 2_g^{h_2}, 3_{e^-}^{h_3}, 4_{e^+}^{h_4}, 5_{\mu^-}^{h_5}, 6_{\mu^+}^{h_6}) , \\ &= \mathcal{A}^{gg \to H} (1_g^{h_1}, 2_g^{h_2}) \times \frac{P_H(s_{12})}{s_{12}} \times \sum_{i=1}^3 a_i \mathcal{A}_i^{H \to ZZ \to 2e2\mu} (3_{e^-}^{h_3}, 4_{e^+}^{h_4}, 5_{\mu^-}^{h_5}, 6_{\mu^+}^{h_6}) \end{aligned}$$

h=+,-
$$P_H(s) = \frac{s}{s - M_H^2 + iM_H\Gamma_H}$$
10

$$\langle ij \rangle = \bar{u}_{-}(p_i)u_{+}(p_j), \ [ij] = \bar{u}_{+}(p_i)u_{-}(p_j)$$


$$\langle ij \rangle [ji] = 2p_i \cdot p_j, \ s_{ij} = (p_i + p_j)^2,$$

$$\mathcal{A}^{gg \to H}(1_g^-, 2_g^-) = \frac{2c_g}{v} \langle 12 \rangle^2$$

$$\begin{split} \frac{c_g}{v} &= \frac{1}{2} \sum_{f} \frac{\delta^{ab}}{2} \frac{i}{16\pi^2} g_s^2 4e \frac{m_f^2}{2M_W s_W} \frac{1}{M_H^2} [2 + M_H^2 (1 - \tau_H) C_0^{\gamma\gamma} (m_f^2)] \\ \mathcal{A}^{H \to ZZ \to 2e2\mu} (3_{e^-}^h, 4_{e^+}^h, 5_{\mu^-}^{h_5}, 6_{\mu^+}^{h_6}) = \sum_{i=1}^3 a_i \mathcal{A}_i^{H \to ZZ \to 2e2\mu} (3_{e^-}^h, 4_{e^+}^h, 5_{\mu^-}^h, 6_{\mu^+}^{h_6}) \\ \mathcal{A}_1^{H \to ZZ \to 2e2\mu} (3_{e^-}^-, 4_{e^+}^+, 5_{\mu^-}^-, 6_{\mu^+}^+) = f \times l_e^2 \frac{M_W^2}{\cos^2 \theta_W} \langle 35 \rangle [46], \\ \mathcal{A}_2^{H \to ZZ \to 2e2\mu} (3_{e^-}^-, 4_{e^+}^+, 5_{\mu^-}^-, 6_{\mu^+}^+) = f \times l_e^2 \times f = -2ie^3 \frac{1}{M_W \sin \theta_W} \frac{P_Z(s_{34})}{s_{34}} \frac{P_Z(s_{56})}{s_{56}} \\ \begin{bmatrix} -2k \cdot k' \langle 35 \rangle [46] - (\langle 35 \rangle [45] + \langle 36 \rangle [46]) (\langle 35 \rangle [36] + \langle 45 \rangle [46]) \end{bmatrix} \\ \mathcal{A}_3^{H \to ZZ \to 2e2\mu} (3_{e^-}^-, 4_{e^+}^+, 5_{\mu^-}^-, 6_{\mu^+}^+) = f \times i l_e^2 \times f = -2ie^3 \frac{1}{M_W \sin \theta_W} \frac{P_Z(s_{34})}{s_{31}} \frac{P_Z(s_{34})}{s_{34}} \frac{P_Z(s_{36})}{s_{56}} \\ \begin{bmatrix} 2(k \cdot k' + \langle 46 \rangle [46]) \langle 35 \rangle [46] + \langle 35 \rangle [45] (\langle 35 \rangle [36] + \langle 45 \rangle [46]) \\ + \langle 36 \rangle [46] (\langle 35 \rangle [36] - \langle 45 \rangle [46]) \end{bmatrix} . \end{split}$$
for the other three helicity combinations $(-, +, +, -)(+, -, -, +) \quad (+, -, +, -)$

with some exchanges like $l_e \leftrightarrow r_e$, $4 \leftrightarrow 6$, $3 \leftrightarrow 5$, $[] \leftrightarrow \langle \rangle$

\star the amplititude for box process

$$\begin{aligned} A(1_g^{h_1}, 2_g^{h_2}, 3_e^-, 4_{\bar{e}}^+, 5_{\mu}^-, 6_{\bar{\mu}}^+) &= \\ A_{LL}(1_g^{h_1}, 2_g^{h_2}, 3_e^-, 4_{\bar{e}}^+, 5_{\mu}^-, 6_{\bar{\mu}}^+) \left(P^{L,L,-,-}(s_{34}, s_{56}) + P^{R,R,-,-}(s_{34}, s_{56}) \right) \\ &+ A_{LR}(1_g^{h_1}, 2_g^{h_2}, 3_e^-, 4_{\bar{e}}^+, 5_{\mu}^-, 6_{\bar{\mu}}^+) \left(P^{L,R,-,-}(s_{34}, s_{56}) + P^{R,L,-,-}(s_{34}, s_{56}) \right) \end{aligned}$$

$$P^{L,L,-,-}(s_{34},s_{56}) = (Q_iq_e + L_il_e\mathcal{P}_Z(s_{34}))(Q_iq_e + L_il_e\mathcal{P}_Z(s_{56}))$$

$$P^{L,R,-,-}(s_{34},s_{56}) = (Q_iq_e + L_il_e\mathcal{P}_Z(s_{34}))(Q_iq_e + R_il_e\mathcal{P}_Z(s_{56}))$$

$$P^{R,L,-,-}(s_{34},s_{56}) = (Q_iq_e + R_il_e\mathcal{P}_Z(s_{34}))(Q_iq_e + L_il_e\mathcal{P}_Z(s_{56}))$$

$$P^{R,R,-,-}(s_{34},s_{56}) = (Q_iq_e + R_il_e\mathcal{P}_Z(s_{34}))(Q_iq_e + R_il_e\mathcal{P}_Z(s_{56}))$$
12


$$A_{LL}(1_g^{h_1}, 2_g^{h_2}, 3_e^-, 4_{\bar{e}}^+, 5_{\bar{\mu}}^-, 6_{\bar{\mu}}^+) = \sum_{j=2}^3 d_j^{d=6}(1^{h_1}, 2^{h_2}) D_0^{d=6}(j) + \sum_{j=1}^3 d_j(1^{h_1}, 2^{h_2}) D_0(j) + \sum_{j=1}^6 c_j(1^{h_1}, 2^{h_2}) C_0(j) + \sum_{j=1}^6 b_j(1^{h_1}, 2^{h_2}) B_0(j) + R(1^{h_1}, 2^{h_2})$$

$$\epsilon_{\mu}^{-}(p_{1})\epsilon_{\nu}^{+}(p_{2})P_{LR}^{\mu\nu\rho\sigma} = \frac{1}{2}\frac{1}{s_{12}^{2}} \Big[-2g^{\rho\sigma}\frac{\langle 1|(3+4)|2]}{\langle 2|(3+4)|1]}s_{12}^{2}A_{2} - \langle 1|\gamma^{\rho}|2]\langle 1|\gamma^{\sigma}|2]s_{12}(A_{3}+A_{4}) \\ - \langle 12\rangle[2|\gamma^{\rho}\gamma^{\sigma}|2]\langle 1|(3+4)|2]A_{5} + \langle 1|\gamma^{\rho}\gamma^{\sigma}|1\rangle[12]\langle 1|(3+4)|2]A_{5} \Big]$$
(B15)
$$\frac{e^{2}}{s_{34}s_{56}}\langle 3|\gamma^{\rho}|4]\langle 5|\gamma^{\sigma}|6]$$

$$A(1_{g}^{-}, 2_{g}^{+}, 3_{e}^{-}, 4_{\bar{e}}^{+}, 5_{\mu}^{-}, 6_{\bar{\mu}}^{+}) = \frac{1}{s_{12}s_{34}s_{56}} \Big[\langle 35 \rangle [46] \frac{\langle 1|(3+4)|2|}{\langle 2|(3+4)|1|} s_{12} A_{2} - \langle 13 \rangle \langle 15 \rangle [24] [26] (A_{3} + A_{4}) \\ + \Big(\frac{\langle 35 \rangle [24] [62]}{[12]} + \frac{\langle 13 \rangle \langle 15 \rangle [46]}{\langle 12 \rangle} \Big) \langle 1|(3+4)|2| A_{5} \Big],$$
(B19)

Coded in MCFM and gg2VV

\star the identical final state 4e/4 μ

The calculation is similar as $2e2\mu$,but there are two differences :

- 1, the cross section should times a symmetry factor 0.25
- 2、 the interference term dictate a factor -1

Simulation by MCFM

Adding anomalous $(a_2, a_3 \neq 0)$ Higgs mediated helicity amplitudes in MCFM program, considering its interference with gg->ZZ box diagram.

 $\sqrt{}$

box process $gg \to ZZ \to 2e2\mu$

$$d\hat{\sigma}(s_{12}) \propto \left| \mathcal{A}_{\text{box}}^{gg \to ZZ \to 4\ell} + \mathcal{A}^{gg \to H \to ZZ \to 4\ell} \right|^2, \qquad k = l;$$

$$\propto \left| \mathcal{A}_{\text{box}}^{gg \to ZZ \to 4\ell} + a_1 \mathcal{A}_{\text{SM}}^H + a_2 \mathcal{A}_{CP-\text{even}}^H + a_3 \mathcal{A}_{CP-\text{odd}}^H \right|^2 \sigma_{k,l} \sim \begin{cases} |\mathcal{A}_k|^2, & k = l; \\ 2\text{Re}(\mathcal{A}_k^* \mathcal{A}_l), & k \neq l. \end{cases}$$

$$k, l = \{\text{box, SM, CP-\text{even, CP-odd}\} \end{cases}$$

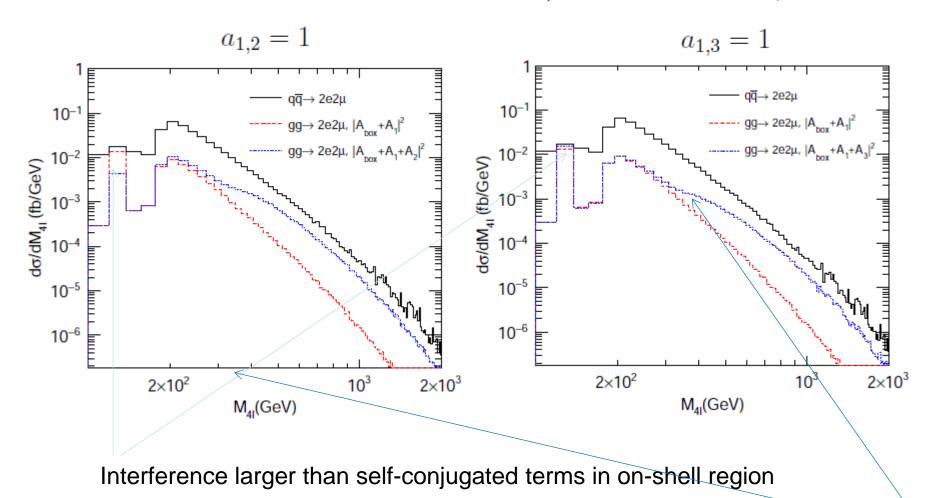
\star CMS cuts for 2e2 μ final states

 $P_{T,l}(hardest) > 20 \text{GeV}$ $40 \text{GeV} < m_{ll}(near) < 120 \text{GeV}$ $P_{T,l}(2nd, hardest) > 10 \text{GeV}$

 $12 GeV < m_{ll}(other) < 120 GeV$

 $gg \rightarrow 2e2\mu$ process

$8~{\rm TeV}$, $m_{4\ell} < 130~{\rm GeV}$						$8~{\rm TeV}$, $m_{4\ell}>220~{\rm GeV}$						$8~{\rm TeV}$, $m_{4\ell}>330~{\rm GeV}$						
- (6-)		har	Higgs-med.				(f b)	1	Higgs-med.			ج (fb)		1	Higgs-med.			
0	$\sigma_{k,l}(\mathrm{fb})$	box	\mathbf{SM}	CP-even	CP-odd	0	$T_{k,l}(\mathrm{fb})$	box	\mathbf{SM}	CP-even	CP-odd	$\sigma_{k,l}(\text{fb})$		box	\mathbf{SM}	CP-even	CP-odd	
	box	0.011	0	0	0		box	0.479	-0.056	0.198	0		box	0.091	-0.032	0.094	0	
med.	SM	0	0.232	-0.257	0	med.	SM	-0.056	0.031	-0.047	0	ned.	SM	-0.032	0.023	-0.023	0	
	CP-even	0	-0.257	0.093	0	So So	CP-even	0.198	-0.047	0.228	0	ggs-n	CP-even	0.094	-0.023	0.165	0	
Ηi	CP-odd	0	0	0	0.035	Hig	CP-odd	0	0	0	0.219	ΗÏ	CP-odd	0	0	0	0.164	


Advantages: Relatively large interference cross section between box & CP-even Higgs-mediated process in off-shell region.¹⁶

$gg \rightarrow 2e2\mu$ process

																				_
$13~{\rm TeV}$, $m_{4\ell} < 130~{\rm GeV}$						$13~{\rm TeV}$, $m_{4\ell}>220~{\rm GeV}$						$13~{\rm TeV}$, $m_{4\ell}>330~{\rm GeV}$								
	- (f -)	1	Higgs-med.					(7)	,	Higgs-med.			- (0-)		1	Higgs-med.				
$\sigma_{k,l}(\mathrm{fb})$		box	\mathbf{SM}	CP-even	CP-odd	l	$\sigma_{k,l}(\text{fb})$		box	SM	CP-even	C	P-odd	$\sigma_{k,l}(\mathrm{fb})$		box	SM	CP-even	CP-od	d
	box	0.024	0	0	0			box	1.283	-0.174	0.571		0		box	0.284	-0.111	0.297	0	
hom	SM	0	0.503	-0.558	0		med.	SM		0.100	-0.137		0	ned.	SM	-0.111	0.078	-0.074	0	
	CP-even	0	-0.558	0.202	0			CP-even		-0.137	0.720		0	ggs-n	CP-even	0.297	-0.074	0.593	0	
H	CP-odd	0	0	0	0.075		Ε	CP-odd	0	0	0		0.716	Hi	CP-odd	0	0	0	0.582	:

In Higgs off-shell regions, interference between Higgs-mediated process and Continuum background could not be ignored.

cross section for the $2e2\mu$ final state $\sqrt{s} = 8 \text{ TeV}$

The total cross section of CP-even Higgs mediated process increase suddenly beyond the top pair threshold.

8TeV LHC real experimental measurements to constraint the anomalous coupling coefficients CMS PAS HIG-14-002

		Full region	Signal-enriched region
	gg + VBF $\rightarrow 4\ell$ (signal, $\Gamma_{\rm H}/\Gamma_{\rm H}^{\rm SM} = 1$)	$2.22 {}^{+0.15}_{-0.17}$	$1.20 {}^{+0.08}_{-0.09}$
	$ m gg + VBF ightarrow 4\ell$ (background)	$31.1^{+3.0}_{-3.1}$	2.12 ± 0.21
(a)	$gg + VBF \rightarrow 4\ell$ (total, $\Gamma_H / \Gamma_H^{SM} = 1$)	$29.6^{+2.8}_{-2.9}$	$1.73^{+0.16}_{-0.17}$
	gg + VBF $\rightarrow 4\ell$ (total, $\Gamma_{\rm H}/\Gamma_{\rm H}^{\rm SM} = 15$)	$51.8^{+4.9}_{-5.0}$	13.1 ± 1.1
(b)	$qar q o 4\ell$	154.7 ± 7.4	8.6 ± 0.4
(c)	Reducible background	3.7 ± 0.6	0.44 ± 0.08
(a+b+c)	Total expected ($\Gamma_{\rm H}/\Gamma_{\rm H}^{\rm SM}=1$)	188.0 ± 7.9	10.8 ± 0.4
	Observed	183	8

- The k factor are set to be equal for signal, background and interference.
- Assume the efficiency is also the same $N_{\text{SM+box}}^{\text{theo}} = 29.6_{-2.9}^{+2.8}$

$$N^{\text{theo}}(a_2, a_3) = \sigma_{\text{tot}} \times \mathcal{L} \times k \times \epsilon$$

 $N^{\text{theo}}(a_2, a_3) = \frac{N^{\text{theo}}_{\text{SM+box}}}{\sigma_{\text{SM+box}}} \times \left[\sigma_{\text{SM+box}} + a_2^2 \sigma_{CP-\text{even}, CP-\text{even}}^H + a_2 \sigma_{CP-\text{even}}^{int} + a_3^2 \sigma_{CP-\text{odd}, CP-\text{odd}}^H\right]$

 $N^{\text{theo}}(a_2, a_3)$ represent the total number of events for $gg + \text{VBF} \rightarrow 4\ell$ process

$$\sigma_{\rm SM+box} = \sigma_{\rm SM,SM} + \sigma_{\rm SM,box} + \sigma_{\rm box,box} \qquad N^{obs} = 183$$

$$\sigma_{CP-even}^{int} = \sigma_{CP-even,SM} + \sigma_{CP-even,box} \qquad N^{theo} = 158.4 \pm 7.4$$

$$N^{theo}(a_2, a_3) = 29.6 + 14.9 \times a_2^2 + 9.8 \times a_2 + 14.3 \times a_3^2$$

$$\chi^2 = \left(\frac{N^{theo}(a_2, a_3) + N^{theo}_{bg} - N^{obs}}{\sigma_N}\right)^2 \qquad 0.5$$

$$a_2 \in [-0.881, 0.223]$$

$$a_3 \in [-0.569, 0.569]$$

$$a_3 \in [-0.569, 0.569]$$

$$n_{cont} = \frac{100}{-1.0} = \frac{100}{-0.5} = \frac{100}{-0.5}$$

20

 a_2

Summary

- CP properties of HZZ couplings are studied.
- Existed experimental results constraint HZZ anomalous coefficients in both Higgs on-shell off-shell region, but interference effects are not complete in their simulation Codes.
- We calculate Helicity amplitudes of HZZ anomalous decay, implemented it in MCFM.
- HZZ anomalous coefficients are constrained in Higgs offshell region, with considering the interference between anomalous Higgs mediated process between gg->4l box diagram.

