Multi-Higgs boson production and Higgs couplings to the SM

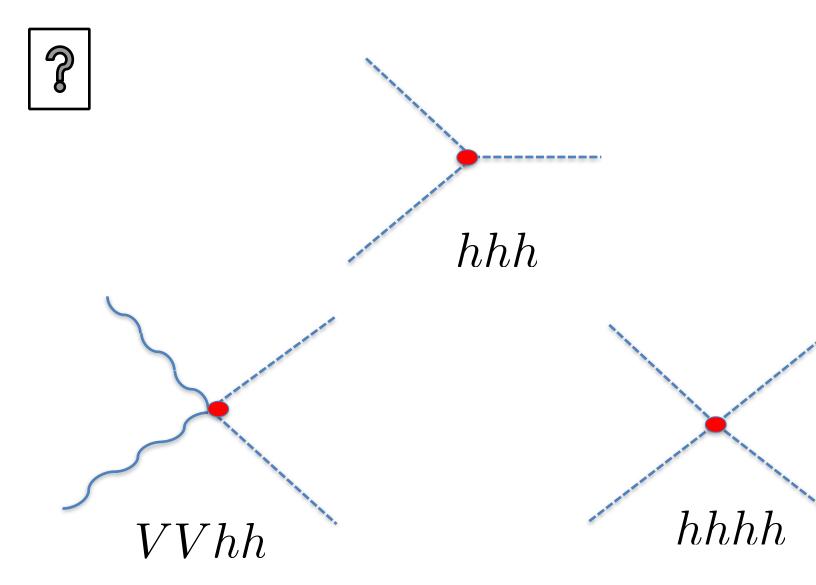
晏启树, UCAS

In collaboration with

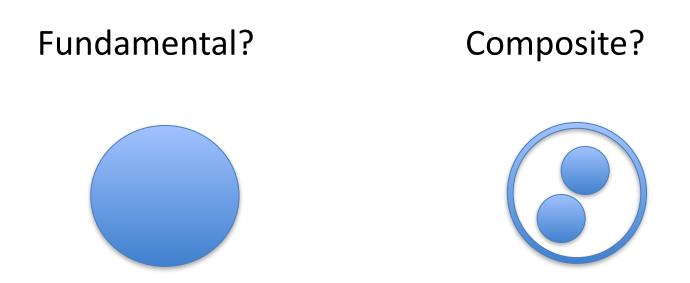
Kilian Wolfgang, Sichun Sun, Xiaoran Zhao, Zhijie Zhao, 粒子物理前沿问题研讨会(广州), 21 – 25/January/2019

Outline

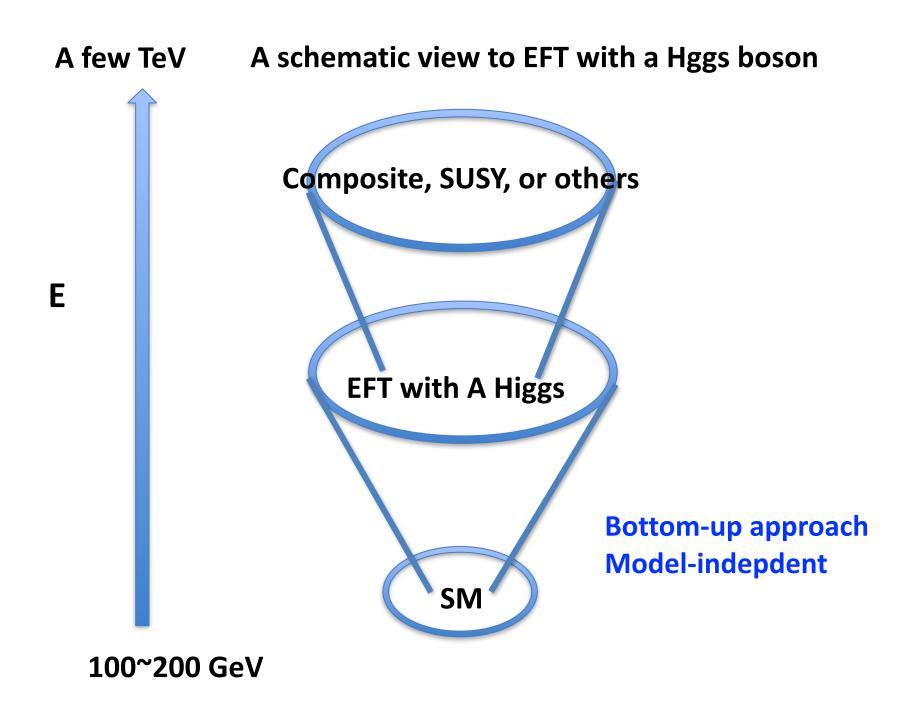
- Introduction
- EW Higgs interactions in the EFT
- Perturbative Unitarity constraint
- VBF Higgs bosons production in the EFT
- Conclusion


arXiv: 1808.05534

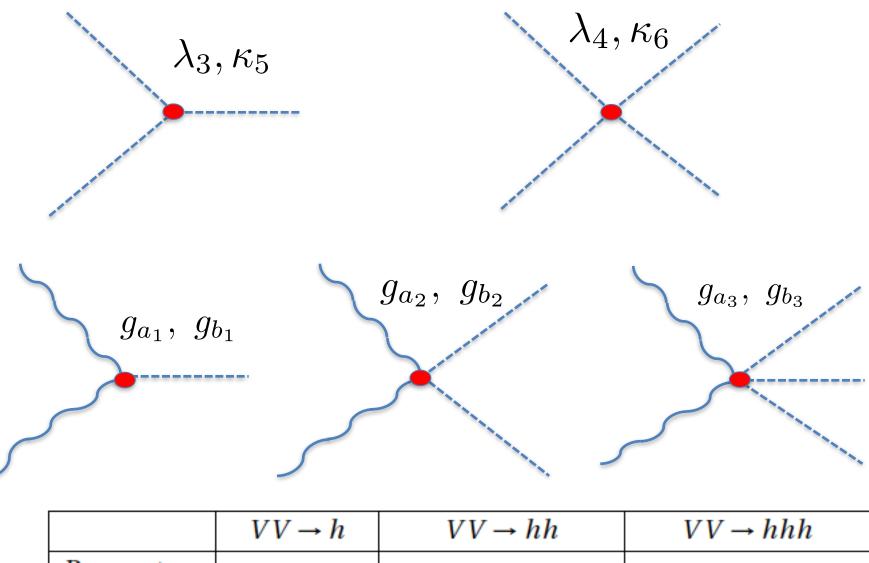
Those we know about Higgs Boson


Production, decay, quantum corrections, ... Agreement with the SM, but ...

Those we do not know up to now



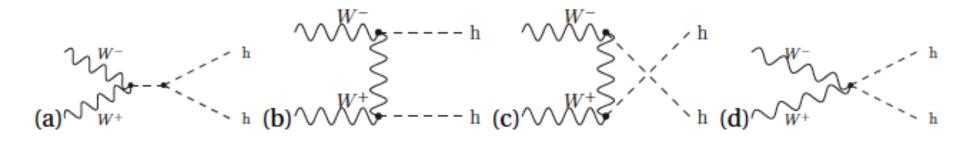
Questions to the Higgs boson


- What's the origin of Higgs boson's mass?
- Is it composite or fundamental?
- What's the shape of Higgs potential?
- How is EW symmetry broken?
- Whether there is only one Higgs boson?
- Can EW baryongensis work?

To resolve the fine structure of Higgs boson, more measurements at the LHC, high precision and high energy machines are needed (Higgs factory, ILC, FCC-ee/pp, CEPC/ SPPC). A new quest to the mystery just began.

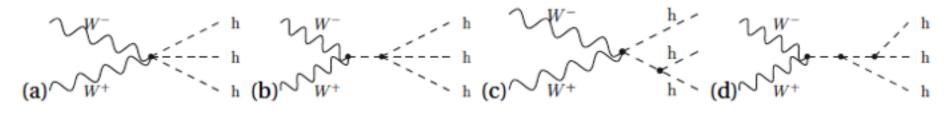
$$\begin{split} \mathscr{L}_{EFT} &= \mathscr{L}_{\overline{SM}} + \mathscr{L}_h + \mathscr{L}_{VVh} + \mathscr{L}_{Vh}, \\ \mathscr{L}_h &= -\lambda_3 \frac{m_h^2}{2v} h^3 - \frac{\xi_5}{2v} h \partial^{\mu} h \partial_{\mu} h - \lambda_4 \frac{m_h^2}{8v^2} h^4 - \frac{\xi_6}{4v^2} h^2 \partial^{\mu} h \partial_{\mu} h + \cdots, \\ \mathscr{L}_{VVh} &= -\left(g_{W,b1} \frac{h}{v} + g_{W,b2} \frac{h^2}{2v^2} + g_{W,b3} \frac{h^3}{6v^3} + \cdots\right) W_{\mu\nu}^+ W^{-\mu\nu} \\ &- \left(g_{A,b1} \frac{h}{2v} + g_{A,b2} \frac{h^2}{4v^2} + g_{A,b3} \frac{h^3}{12v^3} + \cdots\right) F_{\mu\nu} F^{\mu\nu} \\ &- \left(g_{X,b1} \frac{h}{v} + g_{X,b2} \frac{h^2}{2v^2} + g_{X,b3} \frac{h^3}{6v^3} + \cdots\right) F_{\mu\nu} Z^{\mu\nu} \\ &- \left(g_{Z,b1} \frac{h}{2v} + g_{Z,b2} \frac{h^2}{4v^2} + g_{Z,b3} \frac{h^3}{12v^2} + \cdots\right) Z_{\mu\nu} Z^{\mu\nu} \\ \mathscr{L}_{VH} &= g_{W,a1} \frac{2m_W^2}{v} h W^{+,\mu} W_{\mu}^- + g_{W,a2} \frac{m_W^2}{v^2} h^2 W^{\mu} W_{\mu} + g_{W,a3} \frac{m_W^2}{3v^3} h^3 W^{\mu} W_{\mu} \\ &+ g_{Z,a1} \frac{m_Z^2}{v} h Z^{\mu} Z_{\mu} + g_{Z,a2} \frac{m_Z^2}{2v^2} h^2 Z^{\mu} Z_{\mu} + g_{Z,a3} \frac{m_Z^2}{6v^3} h^3 Z^{\mu} Z_{\mu} + \cdots. \end{split}$$

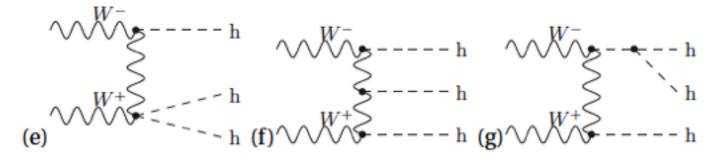
Parameters	$g_{V,a1}, g_{V,b1}$	$g_{V,a1}, g_{V,b1}$	$g_{V,a1}$, $g_{V,b1}$
involved	-	$g_{V,a2}, g_{V,b2}, \lambda_3, \kappa_5$	$g_{V,a2}, g_{V,b2}, \lambda_3, \kappa_5$
	-	-	$g_{V,a3}, g_{V,b3}, \lambda_4, \kappa_6$


$$\begin{split} \mathscr{L}_{\text{SILH}} &= \frac{c_H}{2f^2} \partial^{\mu} \left(H^{\dagger} H \right) \partial_{\mu} \left(H^{\dagger} H \right) + \frac{c_T}{2f^2} \left(H^{\dagger} \overleftrightarrow{D^{\mu}} H \right) \left(H^{\dagger} \overleftrightarrow{D}_{\mu} H \right) - \frac{c_6 \lambda}{f^2} \left(H^{\dagger} H \right)^3 \\ &+ \left(\frac{c_y y_f}{f^2} H^{\dagger} H \widetilde{f}_L H f_R + \text{h.c.} \right) + \frac{c_g g_S^2}{16\pi^2 f^2} \frac{y_t^2}{g_\rho^2} H^{\dagger} H G_{\mu\nu}^a G^{a\mu\nu} \\ &+ \frac{i c_W g}{2m_\rho^2} \left(H^{\dagger} \sigma^i \overleftrightarrow{D^{\mu}} H \right) (D^{\nu} W_{\mu\nu})^i + \frac{i c_B g'}{2m_\rho^2} \left(H^{\dagger} \overleftrightarrow{D^{\mu}} H \right) (\partial^{\nu} B_{\mu\nu}) \\ &+ \frac{i c_{HW} g}{16\pi^2 f^2} (D^{\mu} H)^{\dagger} \sigma^i (D^{\nu} H) W_{\mu\nu}^i + \frac{i c_{HB} g'}{16\pi^2 f^2} (D^{\mu} H)^{\dagger} (D^{\nu} H) B_{\mu\nu} \\ &+ \frac{c_\gamma g'^2}{16\pi^2 f^2} \frac{g^2}{g_\rho^2} H^{\dagger} H B_{\mu\nu} B^{\mu\nu}. \end{split}$$

	SILH	Higgs Inflation
λ_3	$(1 + \frac{5}{2}c_6v^2/f^2)(1 + \frac{3}{2}c_6v^2/f^2)^{-1}\zeta_h$	$(1+6\xi^2 v^2/M_p^2)^{-3/2}$
λ_4	$(1 + \frac{15}{2}c_6v^2/f^2)(1 + \frac{3}{2}c_6v^2/f^2)^{-1}\zeta_h^2$	$(1+6\xi^2 v^2/M_p^2)^{-2}$
ξ5	$-2c_H v^2/f^2 \zeta_h^3$	$-12v^2\xi^2/M_p^2(1+6\xi^2v^2/M_p^2)^{-3/2}$
ξ6	$-2c_H v^2/f^2 \zeta_h^4$	$-12v^2\xi^2/M_p^2(1+6\xi^2v^2/M_p^2)^{-2}$
$g_{W,b1}$	$c_{HW} \frac{g^2 v^2}{32\pi^2 f^2} \zeta_h \zeta_W^2$	0
$g_{W,b2}$	$c_{HW} \frac{g^2 v^2}{32\pi^2 f^2} \zeta_h^2 \zeta_W^2$	0
$g_{W,a1}$	$\left[1 - \left(c_W \frac{g^2 v^2}{m_\rho^2} + c_{HW} \frac{g^2 v^2}{16\pi^2 f^2}\right)\right] \zeta_h \zeta_W^2$	$(1+6\xi^2 v^2/M_p^2)^{-1/2}$
<i>gZ</i> , <i>a</i> 1	$\left[1 - \left(c_W \frac{g^2 v^2}{m_\rho^2} + c_B \frac{g'^2 v^2}{m_\rho^2} + c_{HW} \frac{g^2 v^2}{16\pi^2 f^2} + c_{HB} \frac{g'^2 v^2}{16\pi^2 f^2}\right)\right] \zeta_h \zeta_Z^2$	$(1+6\xi^2 v^2/M_p^2)^{-1/2}$
gw,a2	$\left[1 - 3\left(c_W \frac{g^2 v^2}{m_\rho^2} + c_{HW} \frac{g^2 v^2}{16\pi^2 f^2}\right)\right] \zeta_h^2 \zeta_W^2$	$(1+6\xi^2 v^2/M_p^2)^{-1}$
gZ,a2	$\left[1 - 3\left(c_W \frac{g^2 v^2}{m_\rho^2} + c_B \frac{g'^2 v^2}{m_\rho^2} + c_{HW} \frac{g^2 v^2}{16\pi^2 f^2} + c_{HB} \frac{g'^2 v^2}{16\pi^2 f^2}\right)\right] \zeta_h^2 \zeta_Z^2$	$(1+6\xi^2 v^2/M_p^2)^{-1}$

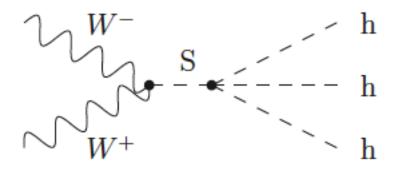
A model corresponds to a specific corner of parameter space


3 Perturbative Unitarity Constraint


$$\begin{split} \mathcal{SS}^{\dagger} &= 1 \quad \mathcal{S} = 1 + i\mathcal{T} \quad -i(\mathcal{T} - \mathcal{T}^{\dagger}) = \mathcal{TT}^{\dagger} \\ a_{AB}^{\alpha\beta} &= \frac{1}{2} \int \mathrm{d}x_a \, \mathrm{d}x_b \, H_A^{\alpha*}(x_a) \, H_B^{\beta}(x_b) \, M^{\beta\alpha}(x_b, x_a) \\ |\mathrm{Re} \, a_{AA}^{\alpha\alpha}|^2 + |\mathrm{Im} \, a_{AA}^{\alpha\alpha} - \frac{1}{2}|^2 + \sum_{C \neq A} |a_{AC}^{\alpha\alpha}|^2 + \sum_{\gamma \neq \alpha} \sum_{C} |a_{AC}^{\alpha\gamma}|^2 = \frac{1}{4} \\ |\mathrm{Re} \, a_{AA}^{\alpha\alpha}|^2 &\leq \frac{1}{4} \\ |\mathrm{Im} \, a_{AA}^{\alpha\alpha} - \frac{1}{2}|^2 &\leq \frac{1}{4} \\ \sum_{C \neq A} |a_{AC}^{\alpha\alpha}|^2 &\leq \frac{1}{4} \\ \sum_{\gamma \neq \alpha} \sum_{C} |a_{AC}^{\alpha\gamma}|^2 &\leq \frac{1}{4} \end{split}$$

$$M(W^+W^- \to hh) = M_s + M_t + M_u + M_4.$$

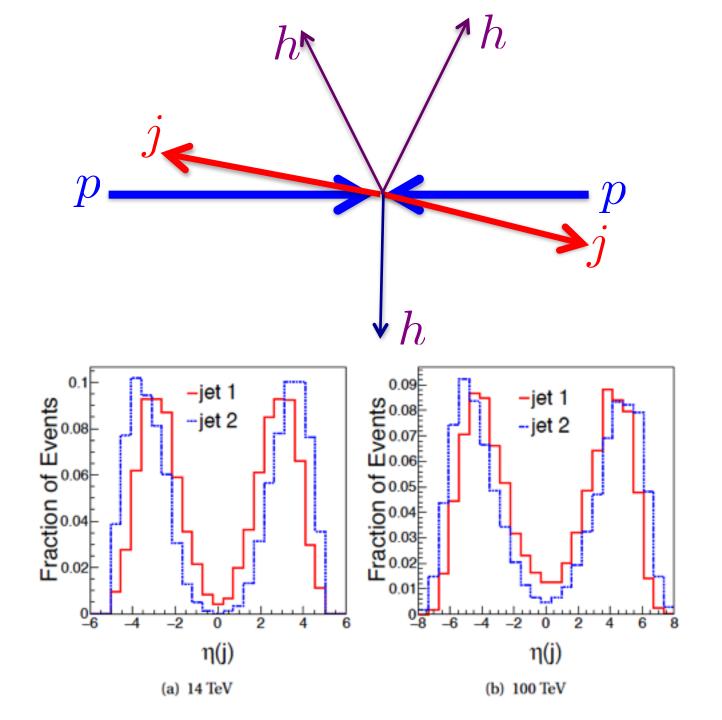
$$\begin{split} M(W^+W^- \to hh) &= \sum_{i=0}^{+\infty} m_i (\frac{\sqrt{s}}{v})^{2-i}.\\ b_0(00) &= \frac{s^2}{512\pi^2 v^4} |g_{W,a2} - g_{W,a1}^2 + \frac{1}{2}\kappa_5 g_{W,a1}|^2 \leq \frac{1}{4}\\ b_0(++) &= \frac{s^2}{512\pi^2 v^4} |g_{W,b2} + 2g_{W,b1}^2 + \frac{1}{2}\kappa_5 g_{W,b1}|^2 \leq \frac{1}{4}\\ b_2(+-) &= \frac{s^2}{3072\pi^2 v^4} g_{W,b1}^4 \leq \frac{1}{4} \end{split}$$



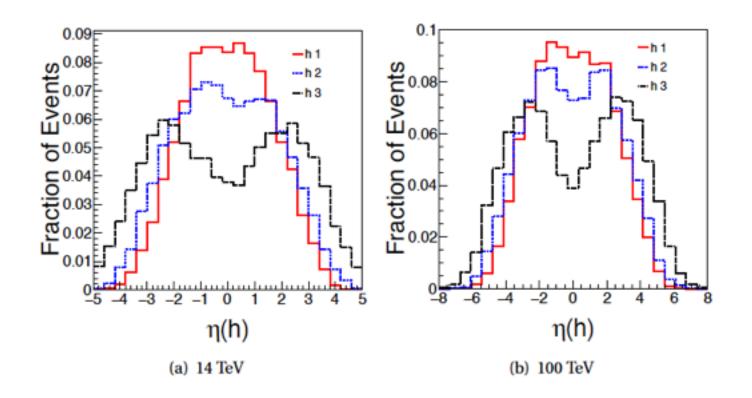
$$b_0(00) = \frac{s^3}{49152\pi^4 v^6} |g_{W,a3} + \frac{1}{2}g_{W,a1}\kappa_6 + \frac{3}{2}g_{W,a2}\kappa_5 + g_{W,a1}\kappa_5^2 - 4g_{W,a1}g_{W,a2} + 4g_{W,a1}^3 - 2g_{W,a1}^2\kappa_5|^2 \le \frac{1}{4}$$

$$b_{0}(++) = \frac{s^{3}}{49152\pi^{4}v^{6}}(|g_{W,b3} + \frac{1}{2}g_{W,b1}\kappa_{6} + \frac{3}{2}g_{W,b2}\kappa_{5} + g_{W,b1}\kappa_{5}^{2} + 6g_{W,b1}g_{W,b2} + f_{1}g_{W,b1}^{3} - 3g_{W,b1}^{2}\kappa_{5}|^{2} + f_{2}g_{W,b1}^{6}) \le \frac{1}{4}$$

4 Multi-Higgs boson final state via VBF Productions

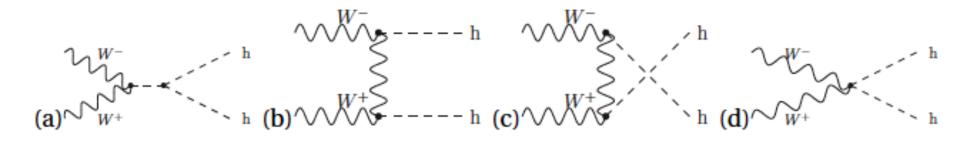

Model Implement in Whizard

$$\mathcal{L}_{S} = \frac{1}{2} (\partial_{\mu}S)^{2} - \frac{1}{2} M^{2}S^{2} - g_{Shhh} (\partial^{2}S)h^{3} + g_{w,a3} \frac{2m_{W}^{2}}{v^{3}} SW^{\mu}W_{\mu} - \frac{g_{w,b3}}{2v^{3}} SW^{\mu\nu}W_{\mu\nu}$$

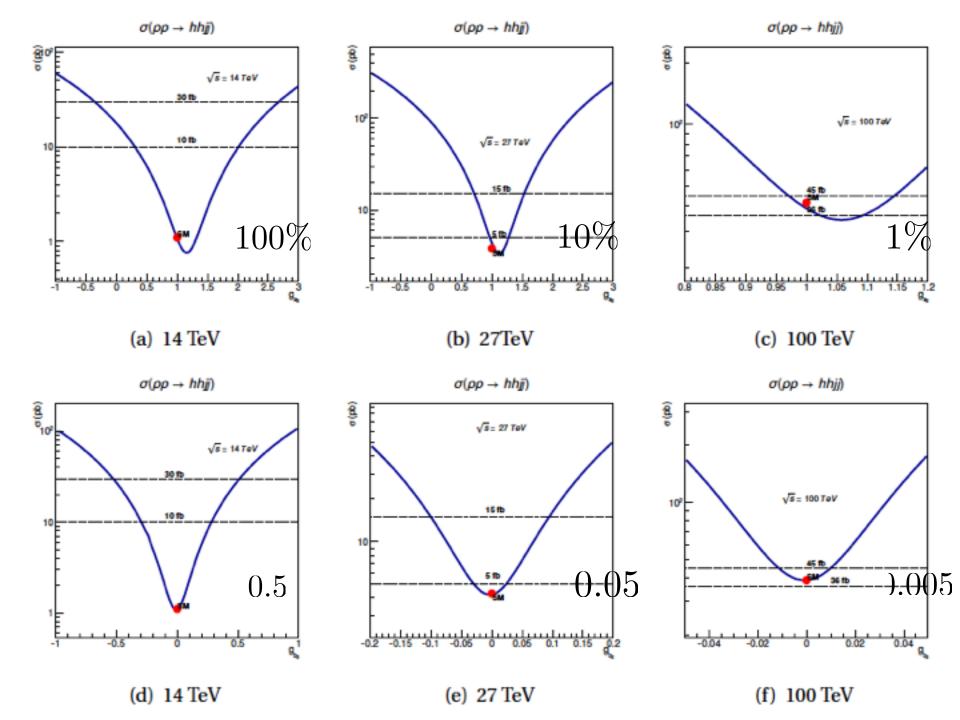

Model Implement in Madgraph

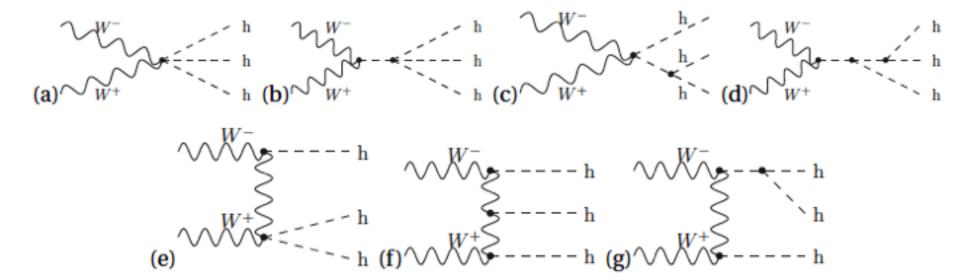
$$\mathcal{L}_{hhh} = \frac{h^3}{3v^3} (g_{w,a3} m_W^2 W^\mu W_\mu - \frac{g_{w,b3}}{4} W^{\mu\nu} W_{\mu\nu}),$$

Agreement among Whizard, Madgraph, and VBFNLO is checked.



Cuts	$\sqrt{s} = 14 \text{ TeV}$	$\sqrt{s} = 27 \text{ TeV}$	$\sqrt{s} = 100 \text{ TeV}$
$P_t(j)$	> 20 GeV	> 20 GeV	> 30 GeV
$\Delta R(j, j)$	> 0.8	> 0.8	> 0.8
$ \eta(j) $	< 5.0	< 5.0	< 8.0
$\Delta \eta(j,j)$	> 3.6	> 3.6	> 4.0
M(j, j)	> 500 GeV	> 500 GeV	> 800 GeV


Process	σ (14TeV) [fb]	σ (100TeV) [fb]	$\frac{\sigma(100 \text{TeV})}{\sigma(14 \text{TeV})}$
$pp \rightarrow hjj$	1.64×10^3	2.60×10^4	15.9
$pp \rightarrow hhjj$	1.10	41.2	37.5
$pp \rightarrow hhhjj$	2.73×10^{-4}	4.50×10^{-2}	165

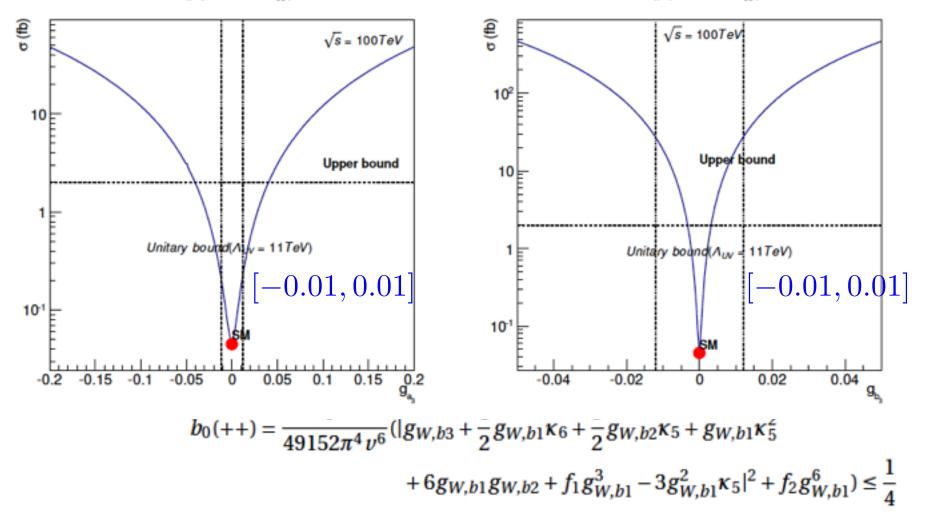

Results in the SM: gains with collision energy increase

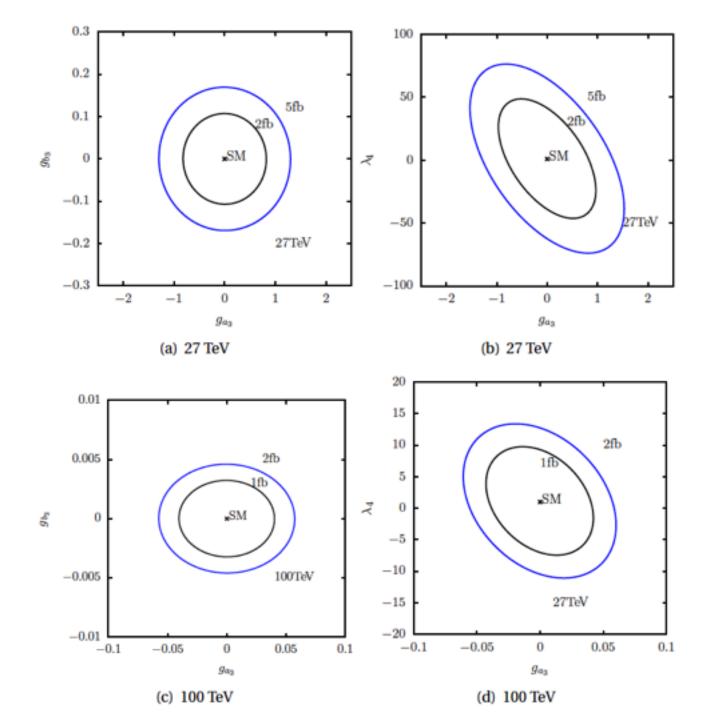
 $\begin{aligned} \sigma(pp \to hhjj) &= K_0 + K_1 g_{W,a2} + K_2 g_{W,a2}^2 + K_3 g_{W,b2} + K_4 g_{W,a2} g_{W,b2} + K_5 g_{W,b2}^2 \\ &+ K_6 \kappa_5 + K_7 g_{W,a2} \kappa_5 + K_8 g_{W,b2} \kappa_5 + K_9 \kappa_5^2 + K_{10} \lambda_3 \\ &+ K_{11} g_{W,a2} \lambda_3 + K_{12} g_{W,b2} \lambda_3 + K_{13} \kappa_5 \lambda_3 + K_{14} \lambda_3^2 \end{aligned}$

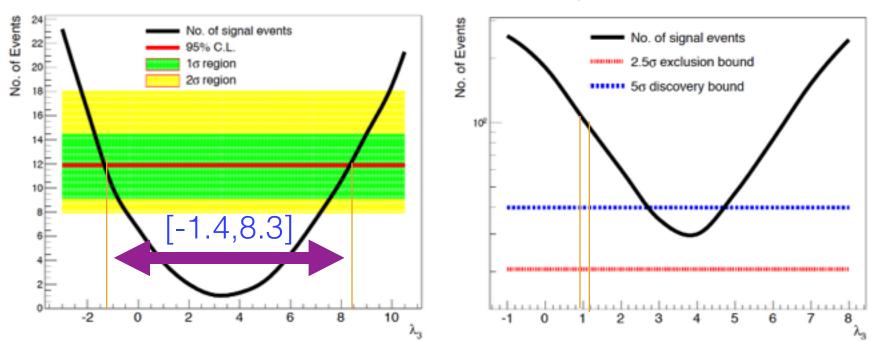
	K ₀	<i>K</i> ₁	<i>K</i> ₂	<i>K</i> ₃	<i>K</i> ₄	<i>K</i> ₅	K ₆	<i>K</i> ₇
14 TeV	23.37	-33.33	12.68	-0.88	1.97	106.8	-19.73	14.65
27 TeV	109.1	- 167.2	68.1	-5.27	10.5	1135.2	-94.96	74.48
100 TeV	1760	-3085	1401	-35.75	108.5	54070	-1630	1461
	<i>K</i> 8	K9	K ₁₀	K ₁₁	K ₁₂	K ₁₃	K14	
14 TeV	K ₈ 1.16	K ₉ 4.27	K ₁₀ -6.39	<i>K</i> ₁₁ 4.00	<i>K</i> ₁₂ 0.43	<i>K</i> ₁₃ 2.70	<i>K</i> ₁₄ 0.73	
14 TeV 27 TeV		-						

$$\begin{split} \sigma(pp \to VVjj \to hhhjj) &= C_0 + C_1 g_{W,a3} + C_2 g_{W,a3}^2 + C_3 g_{W,b3} + C_4 g_{W,a3} g_{W,b3} + C_5 g_{W,b3}^2 \\ &+ C_6 \kappa_6 + C_7 g_{W,a3} \kappa_6 + C_8 g_{W,b3} \kappa_6 + C_9 \kappa_6^2 + C_{10} \lambda_4 \\ &+ C_{11} g_{W,a3} \lambda_4 + C_{12} g_{W,b3} \lambda_4 + C_{13} \kappa_6 \lambda_4 + C_{14} \lambda_4^2 \end{split}$$

We assume other parameters can be determined to be close to those of the SM

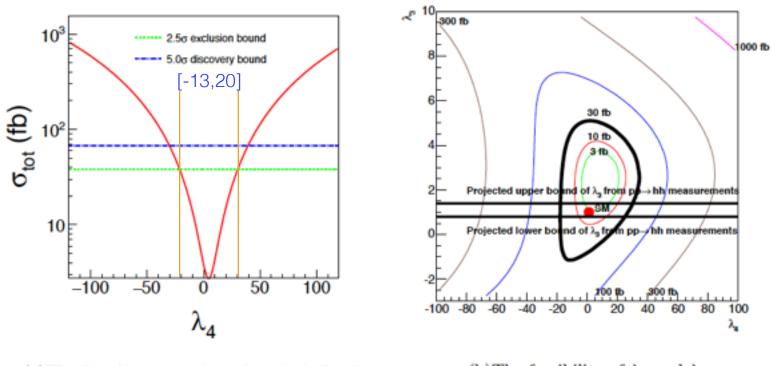

$$\begin{split} \sigma(pp \to VVjj \to hhhjj) &= C_0 + C_1 g_{W,a3} + C_2 g_{W,a3}^2 + C_3 g_{W,b3} + C_4 g_{W,a3} g_{W,b3} + C_5 g_{W,b3}^2 \\ &+ C_6 \kappa_6 + C_7 g_{W,a3} \kappa_6 + C_8 g_{W,b3} \kappa_6 + C_9 \kappa_6^2 + C_{10} \lambda_4 \\ &+ C_{11} g_{W,a3} \lambda_4 + C_{12} g_{W,b3} \lambda_4 + C_{13} \kappa_6 \lambda_4 + C_{14} \lambda_4^2 \end{split}$$


	<i>C</i> ₀	C_1	C ₂	C_3	<i>C</i> ₄
14 TeV	6.18×10^{-4}	-9.42×10^{-3}	1.99×10^{-1}	-6.57×10^{-4}	2.11×10^{-2}
27 TeV	3.29×10^{-3}	-7.44×10^{-2}	2.974	-1.57×10^{-2}	3.02×10^{-1}
100 TeV	4.26×10^{-2}	- 1.74	6.01×10^{2}	-1.96	1.09×10^2
	C_5	<i>C</i> ₆	C7	<i>C</i> 8	C ₉
14 TeV	4.80	-5.18×10^{-3}	2.05×10^{-1}	1.15×10^{-2}	5.30×10^{-2}
27 TeV	1.74×10^2	-3.92×10^{-2}	3.02	2.09×10^{-1}	7.66×10^{-1}
100 TeV	9.36 × 10 ⁴	-1.13	6.08×10^{2}	1.82×10^{1}	1.53×10^{2}
	C ₁₀	C ₁₁	C ₁₂	C ₁₃	C14
14 TeV	-6.19×10^{-4}	9.38×10^{-3}	5.91×10^{-4}	5.03×10^{-2}	2.60×10^{-4}
27 TeV	-2.99×10^{-3}	6.44×10^{-2}	8.99×10^{-3}	3.38×10^{-2}	1.23×10^{-3}
100 TeV	-3.33×10^{-2}	1.88	1.29	9.75×10^{-1}	1.47×10^{-2}


$$\begin{split} b_0(00) &= \frac{s^3}{49152\pi^4 v^6} |g_{W,a3} + \frac{1}{2} g_{W,a1} \kappa_6 + \frac{3}{2} g_{W,a2} \kappa_5 + g_{W,a1} \kappa_5^2 \\ &- 4 g_{W,a1} g_{W,a2} + 4 g_{W,a1}^3 - 2 g_{W,a1}^2 \kappa_5 |^2 \leq \frac{1}{4} \end{split}$$

$$\sigma(pp \rightarrow hhhjj)$$

 $\sigma(pp \rightarrow hhhjj)$



Sensitivity at LHC 14 TeV with a 3000/fb data set

Sensitivity at a 100 TeV Collider with a 3000/fb data set

we can determine trilinear coupling to [0.9,1.2] at a 100 TeV collider with an integrated luminosity 30/ab, similar to a precision that ILC (1 TeV, 4/ab) can achieve

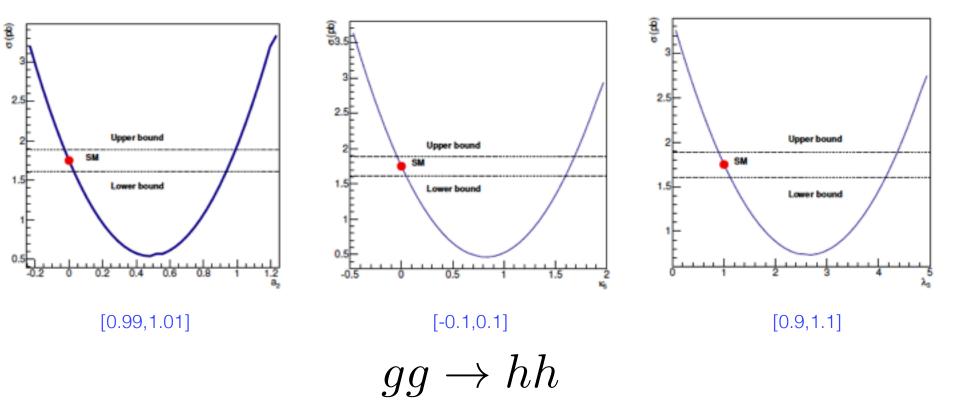
Q. Li, Z. Li, QY, X.R. Zhao, PRD92(2015)1,014015, arXiv:1503.07611

(a) The fitted cross section when λ_3 is fixed

(b)The feasibility of λ_3 and λ_4

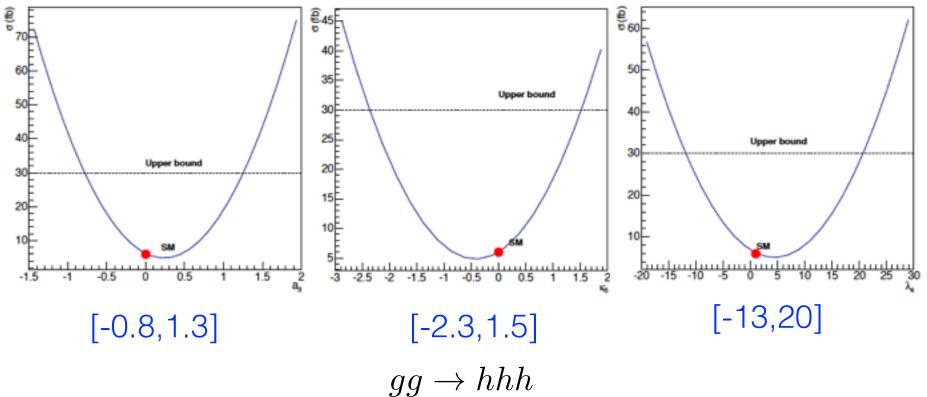
C.Y. Chen, QY, X.R. Zhao, Z.J. Zhao, Y.M. Zhong, PRD93 (2016)1, 013007

EL for GF Processes


A general way to parameterize the EFT Lagrangian is (up to $O(p^6)$)

$$\begin{aligned} \mathcal{L}_{EFT} &= \mathcal{L}_{SM} + \mathcal{L}_t + \mathcal{L}_h + \mathcal{L}_{ggh}, \\ \mathcal{L}_t &= -\left(a_1\frac{m_t}{v}\bar{t}th - a_2\frac{m_t}{2v^2}\bar{t}th^2 - a_3\frac{m_t}{6v^3}\bar{t}th^3, \\ \mathcal{L}_h &= -\left(\lambda_3\frac{m_h^2}{2v}h^3 - \frac{\kappa_5}{2v}h\partial^{\mu}h\partial_{\mu}h - \lambda_4\frac{m_h^2}{8v^2}h^4 - \frac{\kappa_6}{4v^2}h^2\partial^{\mu}h\partial_{\mu}h, \\ \mathcal{L}_{ggh} &= \frac{g_s^2}{48\pi^2}\left(c_1\frac{h}{v} + c_2\frac{h^2}{2v^2}\right)G_{\mu\nu}^aG^{\mu\nu} \end{aligned}$$

where $a_1 = \lambda_3 = \lambda_4 = 1$ and $a_2 = a_3 = \kappa_5 = \kappa_6 = c_1 = c_2 = 0$ in the SM.


		$gg \rightarrow h$	gg ightarrow hh	gg ightarrow hhh
At leading order	Parameters	a_1, c_1	a ₁ , c ₁	a ₁ , c ₁
	involved	-	a ₂ , c_2 , λ_3 , κ_5	a ₂ , c_2 , λ_3 , κ_5
		-	-	a_3 , λ_4 , κ_6

Effective Couplings at a 100 TeV collider

W. Kilian, S. Sun, X. Zhao, and Z. Zhao, JHEP1706,145(2017)

Higgs Quartic Couplings at a 100 TeV collider

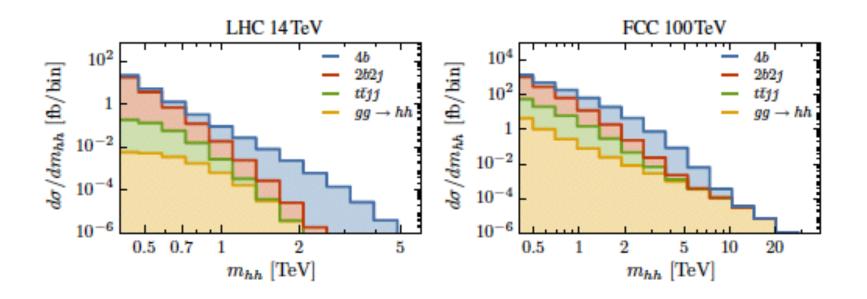
W. Kilian, S. Sun, X. Zhao, and Z. Zhao, JHEP1706,145(2017)

Parameters	LHC	LHC (projected)	ILC	CEPC	100 TeV
λ_3	[-8.82, 15.04] [3]		27% [<mark>102</mark>]	28% [103]	10% [63]
λ_4					[-13,20] [63]
$g_{W,a1}$	≤ 5.4% [<mark>34</mark> , 35]		0.3% [102]	0.2% [108]	
<i>gw,b</i> 1		[-0.008, 0.008] [107]		[-0.30, 0.30] [108]	
$g_{X,b1}$				$\mathcal{O}(10^{-4})$ [109]	
$g_{Z,b1}$	[0.098, 0.554] [<mark>34</mark>]	[-0.011,0.011] [107]		$\mathcal{O}(10^{-4})$ [109]	
gw,a2		[0.85, 1.19] [<mark>39</mark>]			$1^{+1\%}_{-1\%}$ [39]
<i>gw,b</i> 2		[-0.008, 0.008] [107]			$0^{+1\%}_{-1\%}$
<i>gz,b</i> 2		[-0.011,0.011] [107]			$0^{+2\%}_{-2\%}$
gw,a3					$0^{+5\%}_{-5\%}$
<i>gw,b</i> 3					$0^{+0.5\%}_{-0.5\%}$
<i>82,b</i> 3					$0^{+1\%}_{-1\%}$

Conclusion

- EFT is a model independent way to describe new physics.
- EFT with a Higgs boson can serve as a useful tool to explore the potential of the LHC and future colliders.
- High energy hadron colliders and high precision machines can offer us the capability to address the fundamental questions about the Higgs sector at the TeV scale.

Backup


	Cross sections (fb)					
	Acceptance	VBF	Higgs reco.	m _{hh} cut		
14 TeV						
Signal SM	0.011	0.0061	0.0039	0.0020		
Signal $c_{2V} = 0.8$	0.035	0.020	0.017	0.011		
Bkgd (total)	1.3×10^{5}	4.9×10^{3}	569	47		
100 TeV						
Signal SM	0.22	0.15	0.11	0.033		
Signal $c_{2V} = 0.8$	3.4	2.7	1.9	1.6		
Bkgd (total)	1.9×10^{6}	1.9×10^{5}	9.5×10^{3}	212		

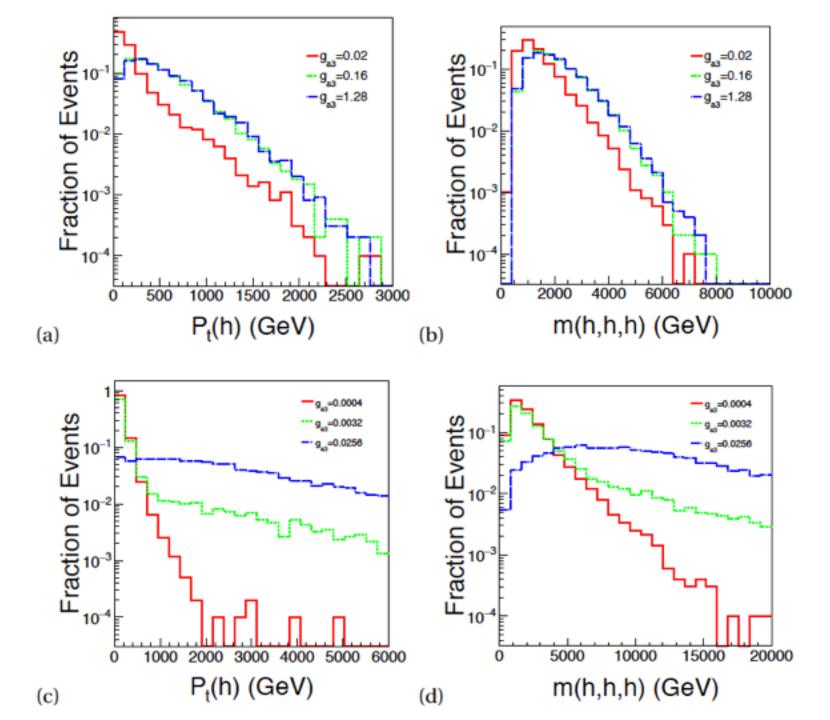

F. Bishara, R. Contino, and J. Rojo, EPJC(2017)77:481

Table 4 Same as Table 3, now listing separately each background process

	Acceptance	VBF	Higgs reco.	m _{hh} cut
LHC 14 TeV				
4 <i>b</i>	$1.18 imes 10^4$	613	54	4.45
2b2 j	1.14×10^5	4.31×10^3	514	42.6
tījj	150	4.75	0.732	0.0706
$gg \rightarrow hh$	0.98	0.0388	0.0223	0.00857
Total	1.3×10^5	4.9×10^3	569	47
FCC 100 TeV	1			
4 <i>b</i>	3.93×10^{5}	4.59×10^4	2.61×10^{3}	106
2b2 j	1.52×10^{6}	1.46×10^{5}	6.88×10^3	104
tījj	9.76×10^{3}	832	55	1.47
$gg \rightarrow hh$	24.8	2.48	1.31	0.0892
Total	$1.9 imes 10^6$	$1.9 imes 10^5$	9.5×10^{3}	212

F. Bishara, R. Contino, and J. Rojo, EPJC(2017)77:481

