Intersecting Mirror Symmetry

Yiwen Pan
based on Phys.Rev. D98 (2018) no.12, 126002, JHEP 1707 (2017) 073,
Phys.Rev. D96 (2017) no.4, 045003,

Sun Yat-sen, 2019 Jan.

Introduction

Introduction

- Target: $3 \mathrm{~d} \mathcal{N}=2$ theories (on $\mathbb{R}^{2} \times S^{1}, S^{3}$)
- 3d $\mathcal{N}=2$ theories: known 3d mirror symmetry e.g.

$$
U(1)_{q, \tilde{q}}, W=0 \leftrightarrow\{X, Y, Z\}, W=X Y Z .
$$

[Aharony, et.al][de Boer, Hori, Oz][Benvenuti, Pasquetti]

Introduction

- Target: $3 \mathrm{~d} \mathcal{N}=2$ theories (on $\mathbb{R}^{2} \times S^{1}, S^{3}$)
- 3d $\mathcal{N}=2$ theories: known 3d mirror symmetry e.g.

$$
U(1)_{q, \tilde{q}}, W=0 \leftrightarrow\{X, Y, Z\}, W=X Y Z
$$

[Aharony, et.al][de Boer, Hori, Oz][Benvenuti, Pasquetti]

- 3d $\mathcal{N}=2$ theories can be generalized to intersecting spaces [YP, Peelaers, 2017]

Introduction

- Target: $3 \mathrm{~d} \mathcal{N}=2$ theories (on $\mathbb{R}^{2} \times S^{1}, S^{3}$)
- 3d $\mathcal{N}=2$ theories: known 3d mirror symmetry
e.g.

$$
U(1)_{q, \tilde{q}}, W=0 \leftrightarrow\{X, Y, Z\}, W=X Y Z
$$

[Aharony, et.al][de Boer, Hori, Oz][Benvenuti, Pasquetti]

- 3d $\mathcal{N}=2$ theories can be generalized to intersecting spaces [YP, Peelaers, 2017]
- Goal: intersecting mirror symmetry

Introduction

- Target: $3 \mathrm{~d} \mathcal{N}=2$ theories (on $\mathbb{R}^{2} \times S^{1}, S^{3}$)
- 3d $\mathcal{N}=2$ theories: known 3d mirror symmetry
e.g.

$$
U(1)_{q, \tilde{q}}, W=0 \leftrightarrow\{X, Y, Z\}, W=X Y Z
$$

[Aharony, et.al][de Boer, Hori, Oz][Benvenuti, Pasquetti]

- $3 \mathrm{~d} \mathcal{N}=2$ theories can be generalized to intersecting spaces [YP, Peelaers]
- Goal (in steps):
A. Explore 3d reduction of string S-duality
B. Use A to predict intersecting mirror symmetry

Outline

1 Review: 3d mirror symmetry

2 Review: Type IIB S-duality

3 Reducing to 3d

4 Discussions and Outlook

1. Review: 3d mirror symmetry

$\mathcal{N}=2$ theories: fields, and the Lagrangian

- Two packs of fields:
- "vector multiplet" $\left(A_{\mu}, \sigma, \lambda, \tilde{\lambda}, D\right)$; gauge group G
- "chiral multiplet" $(\phi, \tilde{\phi}, \psi, \tilde{\psi}, F, \tilde{F})$; representation \mathcal{R}
- Lagrangians $\mathcal{L}_{\mathrm{VM}}$ and $\mathcal{L}_{\mathrm{CM}}$

$$
\begin{aligned}
\mathcal{L}_{\mathrm{VM}}= & \frac{i k}{4 \pi} \operatorname{tr}\left[\epsilon^{\mu \nu \lambda}\left(A_{\mu} \nabla_{\nu} A_{\lambda}-\frac{2 i}{3} A_{\mu} A_{\nu} A_{\lambda}\right)-(\tilde{\lambda} \lambda)+2 D \sigma\right] \\
& +\xi_{\mathrm{FI}} \operatorname{tr}\left[D-\frac{\sigma}{f}\right] \\
\mathcal{L}_{\mathrm{CM}}= & D_{\mu} \tilde{\phi} D^{\mu} \phi-i\left(\tilde{\psi} \gamma^{\mu} D_{\mu} \psi\right)+\frac{\mathcal{R}}{8} \tilde{\phi} \phi+i(\tilde{\psi} \sigma \psi) \\
& +i(\tilde{\psi} \lambda) \phi-i \tilde{\phi}(\tilde{\lambda} \psi)+\tilde{\phi} D \phi+\tilde{\phi} \sigma^{2} \phi+\tilde{F} F+W
\end{aligned}
$$

Parameters

－Gauge group and matter representation \mathcal{R}
－Chern－Simons level k（ $k=0$ for us）
－Fayet－lliopoulos parameter ξ_{FI}
－complex masses m_{i} ：from shifting $\sigma \phi_{i} \rightarrow\left(\sigma+m_{i}\right) \phi_{i}$
－Superpotential W constrains the masses and $U(1)_{\mathcal{R}}$ charges of chirals

Mirror symmetry

- IR duality: mirror dual theories flow to same fixed point
- For $\mathcal{N}=4$:
- \mathcal{R}-symmetry groups $S U(2)_{\mathrm{H}} \xrightarrow{\text { mirror }} S U(2)_{\mathrm{C}}$
- moduli spaces $\mathcal{M}_{\mathrm{H}} \stackrel{\text { mirror }}{\longrightarrow} \mathcal{M}_{\mathrm{C}}$
- chiral rings $\chi_{\mathrm{H}} \stackrel{\text { mirror }}{\longleftrightarrow} \chi_{\mathrm{C}}$
- FI-params $\stackrel{\text { mirror }}{\longleftrightarrow}$ masses
- Mirror dual theories: equal partition functions (Important tool)

2. Review: Type IIB S-duality

IIB string theory

- Simple branes: D5 and NS5 branes
- Bound state: (p, q)-brane $\sim p \mathrm{D} 5+q$ NS5
(1,0)-brane $=$ D5 brane $(0,1)$-brane $=$ NS5 brane
- Lots of (p, q) branes (and some rules): (p, q)-web

Webs and "Feynman diagrams"

- A Feynman diagram $=$ a physical process (in a theory)

Webs and "Feynman diagrams"

- A Feynman diagram $=$ a physical process (in a theory)
- A web $=\mathrm{a}$ theory [Aharony, Hanany, Kol)[Hanany, Witten]
- a $5 \mathrm{~d} \mathcal{N}=1$ theory
- special webs $=$ special $5 \mathrm{~d} \mathcal{N}=1$ theories

Webs and "Feynman diagrams"

- A Feynman diagram $=$ a physical process (in a theory)
- A web $=$ a theory [Aharony, Hanany, Kol][Hanany, Witten]
- a $5 \mathrm{~d} \mathcal{N}=1$ theory
- special webs $=$ special $5 \mathrm{~d} \mathcal{N}=1$ theories

Webs and "Feynman diagrams"

- A Feynman diagram $\xrightarrow{\text { Feynman rules }}$ the amplitude

Webs and "Feynman diagrams"

- A Feynman diagram $\xrightarrow{\text { Feynman rules }}$ the amplitude - A web $\xrightarrow{\text { refined top. vertex }}$ the partition function (p. f.)
[Aganagic, et.al.][lqbal, Kozçaz, Vafa][Awata, Kanno]

Webs and "Feynman diagrams"

- A Feynman diagram $\xrightarrow{\text { Feynman rules }}$ the amplitude
- A web $\xrightarrow{\text { refined top. vertex }}$ the partition function (p.f.)
[Aganagic, et.al.][lqbal, Kozçaz, Vafa][Awata, Kanno]
- Topological vertex

Momentum $p \rightarrow$ Young diagrams Y

$$
\int d p \rightarrow \sum_{Y}
$$

interaction vertex \rightarrow product of Macdonald function $P_{\lambda / \mu}$ internal lines \rightarrow "framing factors", "Kahler params" Q

Webs and "Feynman diagrams"

- A Feynman diagram $\xrightarrow{\text { Feynman rules }}$ the amplitude - A web $\xrightarrow{\text { refined top. vertex }}$ the partition function (p. f.)
[Awata, Kanno]

Webs and "Feynman diagrams"

- A web $\xrightarrow{\text { refined top. vertex }}$ the partition function (p. f.)
[Awata, Kanno]

where the double q-Pochhammer symbol

$$
\left(x ; q, t^{-1}\right) \equiv \prod_{m, n=0}^{+\infty}\left(1-x q^{m} t^{-n}\right)
$$

Webs and "Feynman diagrams"

- A web $\xrightarrow{\text { refined top. vertex }}$ the partition function
[Awata, Kanno]

where in instanton partition function $\sum_{Y} Z_{\text {inst }}(Y ; Q)$

Webs and "Feynman diagrams"

- A web $\xrightarrow{\text { refined top. vertex }}$ the partition function
[Awata, Kanno]

where in instanton partition function $\sum_{Y} Z_{\text {inst }}(Y ; Q)$
- \sum_{Y} : sum over all Young diagrams

Webs and "Feynman diagrams"

- A web $\xrightarrow{\text { refined top. vertex }}$ the partition function
[Awata, Kanno]

where in instanton partition function $\sum_{Y} Z_{\text {inst }}(Y ; Q)$
- \sum_{Y} : sum over all Young diagrams
- $Z_{\text {inst }}(Y ; Q)$: some rational function of Q^{\prime} s.

Webs and "Feynman diagrams"

- Q's: 5d gauge couplings g_{YM} and masses M^{\prime}; Schematically,

$$
Q^{\prime} \mathrm{S} \sim e^{2 \pi i M} e^{\frac{1}{g_{\mathrm{YM}}^{2}}}
$$

S-duality

S-duality of string theory:

- NS5 \leftrightarrow D5
- $(p, q) \leftrightarrow(q,-p)$
- non-trivial equality betweens Z 's

3. S-duality to 3d Mirror duality

Higgsing and defects

- 5 d theory $\xrightarrow{\text { Higgsing }} 5 \mathrm{~d} / 3 \mathrm{~d} / 1 \mathrm{~d}$ coupled system [YP, Peelaers, 2017][Nieri, YP, Zabzine, 2018]
- 3d/1d sector (5d p.o.v): supersymmetric defects

$$
\begin{array}{lr}
S^{5}: & \omega_{1}^{2}\left|z_{1}\right|^{2}+\omega_{2}^{2}\left|z_{2}\right|^{2}+\omega_{3}^{2}\left|z_{3}\right|^{2}=1 \\
S_{(2)}^{3}: & \omega_{1}^{3}\left|z_{1}\right|^{2}+ \\
+\omega_{3}^{2}\left|z_{3}\right|^{2}=1 \\
S_{(1)}^{3}: & \omega_{1}^{3}\left|z_{1}\right|^{2}+\omega_{3}^{2}\left|z_{3}\right|^{2}=1 \\
S^{1}: & \omega_{3}^{2}\left|z_{3}\right|^{2}=1
\end{array}
$$

Higgsing and defects

- 5d theory $\xrightarrow{\text { Higgsing }} 5 \mathrm{~d} / 3 \mathrm{~d} / 1 \mathrm{~d}$ coupled system
[YP, Peelaers, 2017][Nieri, YP, Zabzine, 2018]
- 3d/1d sector (5d p.o.v): supersymmetric defects .
- 3d/1d sector itself: an intersecting gauge theory
- Two separate $3 \mathrm{~d} \mathcal{N}=2$ gauge theories $\mathcal{T}_{(1)}, \mathcal{T}_{(2)}$

Higgsing and defects

- 5d theory $\xrightarrow{\text { Higgsing }} 5 \mathrm{~d} / 3 \mathrm{~d} / 1 \mathrm{~d}$ coupled system
[YP, Peelaers, 2017][Nieri, YP, Zabzine, 2018]
- 3d/1d sector (5d p.o.v): supersymmetric defects .
- 3d/1d sector itself: an intersecting gauge theory
- Two separate $3 \mathrm{~d} \mathcal{N}=2$ gauge theories $\mathcal{T}_{(1)}, \mathcal{T}_{(2)}$
- defined on two spaces $S_{(1)}^{3}, S_{(2)}^{3}$

Higgsing and defects

- 5 d theory $\xrightarrow{\text { Higgsing }} 5 \mathrm{~d} / 3 \mathrm{~d} / 1 \mathrm{~d}$ coupled system
[YP, Peelaers, 2017][Nieri, YP, Zabzine, 2018]
- 3d/1d sector (5d p.o.v): supersymmetric defects .
- 3d/1d sector itself: an intersecting gauge theory
- Two separate $3 \mathrm{~d} \mathcal{N}=2$ gauge theories $\mathcal{T}_{(1)}, \mathcal{T}_{(2)}$
- defined on two spaces $S_{(1)}^{3}, S_{(2)}^{3}$
- $S_{(1)}^{3}$ and $S_{(2)}^{3}$ intersect: $S_{(1)}^{3} \cap S_{(2)}^{3}=S^{1}$

Higgsing and defects

- 5d theory $\xrightarrow{\text { Higgsing }} 5 \mathrm{~d} / 3 \mathrm{~d} / 1 \mathrm{~d}$ coupled system
[YP, Peelaers, 2017][Nieri, YP, Zabzine, 2018]
- 3d/1d sector (5d p.o.v): supersymmetric defects.
- 3d/1d sector itself: an intersecting gauge theory
- Two separate $3 \mathrm{~d} \mathcal{N}=2$ gauge theories $\mathcal{T}_{(1)}, \mathcal{T}_{(2)}$
- defined on two spaces $S_{(1)}^{3}, S_{(2)}^{3}$
- $S_{(1)}^{3}$ and $S_{(2)}^{3}$ intersect: $S_{(1)}^{3} \cap S_{(2)}^{3}=S^{1}$
- Additional 1d theory $\mathcal{T}^{\text {1d }}$ on S^{1}

Higgsing and defects

- 5d theory $\xrightarrow{\text { Higgsing }} 5 \mathrm{~d} / 3 \mathrm{~d} / 1 \mathrm{~d}$ coupled system [YP, Peelaers, 2017][Nieri, YP, Zabzine, 2018]
- 3d/1d sector (5d p.o.v): supersymmetric defects.
- 3d/1d sector itself: an intersecting gauge theory
- Two separate $3 \mathrm{~d} \mathcal{N}=2$ gauge theories $\mathcal{T}_{(1)}, \mathcal{T}_{(2)}$
- defined on two spaces $S_{(1)}^{3}, S_{(2)}^{3}$
- $S_{(1)}^{3}$ and $S_{(2)}^{3}$ intersect: $S_{(1)}^{3} \cap S_{(2)}^{3}=S^{1}$
- Additional 1d theory $\mathcal{T}^{1 d}$ on S^{1}
- $\mathcal{T}^{(1)}$ and $\mathcal{T}^{(2)}$ interact with $\mathcal{T}^{1 \mathrm{~d}}$ (capturing intersection).

Higgsing and defects

- 5 d theory $\xrightarrow{\text { Higgsing }} 5 \mathrm{~d} / 3 \mathrm{~d} / 1 \mathrm{~d}$ coupled system
[YP, Peelaers, 2017][Nieri, YP, Zabzine, 2018]
- 3d/1d sector (5d p.o.v.): supersymmetric defects
- 3d/1d sector itself: an intersecting gauge theory

$$
S_{(1)}^{3}, \mathcal{T}^{(1)} \quad S_{(2)}^{3}, \mathcal{T}^{(2)}
$$

$$
\begin{array}{lr}
S_{(2)}^{3}: & \omega_{1}^{3}\left|z_{1}\right|^{2}+ \\
S_{(1)}^{3}: & \omega_{3}^{2}\left|z_{3}\right|^{2}=1 \\
S^{1}: & \omega_{3}^{2}\left|z_{3}\right|^{2}+\omega_{3}^{2}\left|z_{3}\right|^{2}=1
\end{array}
$$

Higgsing and examples

- 5 d theory $\xrightarrow{\text { Higgsing }} 5 \mathrm{~d} / 3 \mathrm{~d} / 1 \mathrm{~d}$ coupled system
- 3d/1d sector (5d p.o.v.): supersymmetric defects
- Examples [YP, Peelaers, 2017][Nieri, YP, Zabzine, 2018]

$$
\mathcal{T} \quad \widetilde{\mathcal{T}} \quad \mathcal{T}^{S_{(1)}^{3} \cup S_{(2)}^{3} \subset S^{5}}
$$

Higgsing and examples

-5d theory $\xrightarrow{\text { Higgsing }} 5 \mathrm{~d} / 3 \mathrm{~d} / 1 \mathrm{~d}$ coupled system

- 3d/1d sector (5d p.o.v.): supersymmetric defects
- Examples [YP, Peelaers, 2017][Nieri, YP, Zabzine, 2018]

Higgsing: the partition function

- 5d Partition function $Z\left(M, g_{\mathrm{YM}}\right)$: meromorphic function

Higgsing: the partition function

- 5d Partition function $Z\left(M, g_{\mathrm{YM}}\right)$: meromorphic function
- $Z\left(M, g_{\mathrm{YM}}\right)$ has poles

$$
M \rightarrow M^{\vec{n}} \equiv \ldots+\sum_{\alpha=1}^{3} i\left(n^{(\alpha)}+\frac{1}{2}\right) \omega_{\alpha}
$$

Higgsing: the partition function

- 5d Partition function $Z\left(M, g_{\mathrm{YM}}\right)$: meromorphic function
- $Z\left(M, g_{\mathrm{YM}}\right)$ has poles

$$
M \rightarrow M^{\vec{n}} \equiv \ldots+\sum_{\alpha=1}^{3} i\left(n^{(\alpha)}+\frac{1}{2}\right) \omega_{\alpha}
$$

- Higgsing: computes (sum of) residue(s) at pole(s)

Higgsing: the partition function

- 5d Partition function $Z\left(M, g_{\mathrm{YM}}\right)$: meromorphic function
- $Z\left(M, g_{\mathrm{YM}}\right)$ has poles
$M \rightarrow M^{\vec{n}} \equiv \ldots+\sum_{\alpha=1}^{3} i\left(n^{(\alpha)}+\frac{1}{2}\right) \omega_{\alpha}$
- Higgsing: computes (sum of) residue(s) at pole(s)
- The residue $=$ p. f. with defects

$$
\operatorname{Res}_{M \rightarrow M^{\vec{n}}} Z(M)=Z^{S_{(1)}^{3} \cup S_{(2)}^{3}}
$$

(a) Factorizing instanton partition function
summands [YP, Peelaers]: $Z_{\text {inst }} \sim Z_{\text {vort }} Z_{\text {vort }} Z_{\text {intersection }}$
(b) $\left|\sum_{Y}\right|_{S L(3, \mathbb{Z})} \rightarrow$ Jeffrey-Kirwan residue

Higgsing the partition function

The p. f. of intersecting 3d gauge theory
$Z^{S_{(1)}^{3} \cup S_{(2)}^{3}}=\int d^{n^{(1)}} \sigma d^{n^{(2)}} \sigma Z^{S_{(1)}^{3}}\left(\sigma^{(1)}\right) Z^{S_{(2)}^{3}}\left(\sigma^{(2)}\right) Z^{S^{1}}\left(\sigma^{(1)}, \sigma^{(2)}\right)$.

- 5d gauge coupling $g_{\mathrm{YM}}^{-2} \xrightarrow{\text { Higgsing }}$ FI-parameter ξ_{FI}
- 5d masses $\xrightarrow{\text { Higgsing }} 3 \mathrm{~d}$ massses
- 5d/3d superpotentials generated: mass relations across theories on $S_{(1)}^{3}$, $S_{(2)}^{3}$

Reducing S-duality

- Start from S-dual 5d partition functions
- Apply Higgsing on both sides
- S-duality $\xrightarrow{\text { Higgsing }}$ induced 3d mirror? duality

Reducing S-duality

- Goal: identify the induced 3d duality.

Reducing S-duality

- Goal: identify the induced 3d duality.
- First fix $n^{(2)}=0$.

Reducing S-duality

- Goal: identify the induced 3d duality.
- First fix $n^{(2)}=0$.
- When $n^{(1)}=1$, is precisely [Nieri, YP, Zabzine]

$$
U(1)_{q, \tilde{q}}, W=0 \leftrightarrow\{x, y, z\}, W=x y z .
$$

Reducing S-duality

- Goal: identify the induced 3d duality.
- First fix $n^{(2)}=0$.
- When $n^{(1)}=1$, is precisely [Nieri, YP, Zabzine]

$$
U(1)_{q, \tilde{q}}, W=0 \leftrightarrow\{x, y, z\}, W=x y z .
$$

- Recovered well-known 3d mirror pair on $S_{(1)}^{3}$

Reducing S-duality $\left(n^{(2)}=0\right)$

- $n^{(1)}=n>1$ [Nieri, YP, Zabzine]
- LHS: $U(n)_{q, \tilde{q}, \Phi}, W=0$ on $S_{(1)}^{3}$
- RHS: Collection of free chirals on $S_{(1)}^{3}$

Reducing S-duality $\left(n^{(2)}=0\right)$

$-n^{(1)}=n>1$ [Nieri, YP, Zabzine]

- LHS: $U(n)_{q, \tilde{q}, \Phi}, W=0$ on $S_{(1)}^{3}$
- RHS: Collection of free chirals on $S_{(1)}^{3}$
- $U(n)$ theory (LHS) has topological $U(1)$ global symmetry:
The free theory (RHS) has corresponding $U(1)$ flavor symmetry.

Reducing S-duality $\left(n^{(2)}=0\right)$

- $n^{(1)}=n>1$ [Nieri, YP, Zabzine]
- LHS: $U(n)_{q, \tilde{q}, \Phi}, W=0$ on $S_{(1)}^{3}$
- RHS: Collection of free chirals on $S_{(1)}^{3}$
- $U(n)$ theory (LHS) has topological $U(1)$ global symmetry:
The free theory (RHS) has corresponding $U(1)$ flavor symmetry.
- gauge it (on both sides) (integrate over ξ_{FI})
- LHS: $U(n) \rightarrow S U(n)$
- RHS: free chirals $\rightarrow U(1)$ gauge theory

Reducing S-duality $\left(n^{(2)}=0\right)$

- $n^{(1)}=n>1$ [Nieri, YP, Zabzine]
- LHS: $U(n)_{q, \tilde{q}, \Phi}, W=0$ on $S_{(1)}^{3}$
- RHS: Collection of free chirals on $S_{(1)}^{3}$

Reducing S-duality $\left(n^{(2)}=0\right)$

- $n^{(1)}=n>1$ [Nieri, YP, Zabzine]
- LHS: $U(n)_{q, \tilde{q}, \Phi}, W=0$ on $S_{(1)}^{3}$
- RHS: Collection of free chirals on $S_{(1)}^{3}$
- After gauging (and rearrangement of neutral chirals)

$$
W=\sum_{\mu=2}^{n} \beta_{\mu} \Phi^{\mu}+\sum_{\mu=0}^{n-2} \gamma_{\mu} \tilde{q} \Phi^{\mu} q
$$

$$
W=\sum_{\mu=0}^{n-1} X_{\mu} Y_{\mu} Z
$$

Reducing S-duality $\left(n^{(2)}=0\right)$

- $n^{(1)}=n>1$ [Nieri, YP, Zabzine]
- LHS: $U(n)_{q, \tilde{q}, \Phi}, W=0$ on $S_{(1)}^{3}$
- RHS: Collection of free chirals on $S_{(1)}^{3}$
- After gauging
- known mirror pair
- Important in studying UV Lagrangian description and SUSY enhancement of Argyres-Douglas theories [Benvenuti, Giacomelli]

Reducing S-duality $\left(n^{(2)}>0\right)$

- Conjecture [Nieri, YP, Zabzine]: when $n^{(1)}, n^{(2)} \geq 1$, S-duality reduces to mirror symmetry between a set of intersecting gauge theories on $S_{(1)}^{3}$ and $S_{(2)}^{3}$.
e.g.

$$
\leftrightarrow \quad(X Y Z)_{(1)} \cdots \cdots(X Y Z)_{(2)}
$$

Reducing S-duality $\left(n^{(2)}>0\right)$

- Conjecture [Nieri, YP, Zabzine]: when $n^{(1)}, n^{(2)} \geq 1$, S-duality reduces to mirror symmetry between a set of intersecting gauge theories on $S_{(1)}^{3}$ and $S_{(2)}^{3}$.
e.g.

(superpotentials omitted from the figure)

Reducing S-duality $\left(n^{(2)}>0\right)$

Or as integral identity,

$$
\begin{aligned}
& Z_{\mathrm{U}\left(n^{(1)}\right)-\mathrm{SQCDA} \cup \mathrm{U}\left(n^{(2)}\right) \text {-SQCDA }}^{\mathbb{S}_{(1)}^{3}}= \\
& =\prod_{\alpha=1}^{2}\left[\mathrm{e}^{-\pi \mathrm{i} n \zeta(m+\tilde{m})} \prod_{\mu=0}^{n-1} s_{b}\left(\frac{\mathrm{i} Q}{2}+m_{\Phi \mu}\right) s_{b}\left(\frac{\mathrm{i} Q}{2}+m_{Z \mu}\right) s_{b}\left(\frac{\mathrm{i} Q}{2}+m_{X \mu}\right) s_{b}\left(\frac{\mathrm{i} Q}{2}+m_{Y \mu}\right)\right]_{(\alpha)} \times \\
& \times \prod_{\mu=0}^{n^{(1)}-1} \prod_{\nu=0}^{n^{(2)}-1} \frac{\sin \frac{\pi \mathrm{i}}{2}\left(b_{(1)}\left(m_{X \mu}-m_{\Phi \mu}\right)^{(1)}+b_{(2)}\left(m_{X \mu}-m_{\Phi \nu}\right)^{(2)}+\mathrm{i} b_{(2)}^{2}+\mathrm{i}_{(1)}^{2}\right)(X \rightarrow Y)}{\sin \pi \mathrm{i}\left(b_{(1)} m_{\Phi \mu}^{(1)}+b_{(2)} m_{\Phi \nu}^{(2)}\right) \sin \frac{\pi \mathrm{i}}{2}\left(b_{(1)}\left(m_{Z \mu}+m_{\Phi \mu}\right)^{(1)}+b_{(2)}\left(m_{Z \nu}+m_{\Phi \nu}\right)^{(2)}\right)},
\end{aligned}
$$

and its corollaries.

4．Summary and Outlook

Summary

- 5d theories have S-duality
- 5d $\xrightarrow{\text { Higgsing }} 3 \mathrm{~d}$ intersecting gauge theories
- S-duality $\xrightarrow{\text { Higgsing }}$ known 3d mirror symmetry
- S-duality $\xrightarrow{\text { Higgsing }}$ general 3d mirror symmetry on intersecting spaces (1d chiral $\xrightarrow{\text { mirror }} 1 d$ Fermi)

Outlook

- Generalize other known dualities (Seiberg, 3d-3d) to intersecting spaces
- Explore algebraic origin of 3d mirror symmetry
- 3d gauge theories $\leftrightarrow q$-Virasoro algebra (VEV of integrated product of screening charges)
[Nedelin, Nieri, Zabzine][Nieri, YP, Zabzine] ...
- 5d gauge theories \leftrightarrow DIM algebra, q-Virasoro algebra [Awata, Pestun][Awata, et.al.][Bourgine] ...
- S-duality \leftrightarrow DIM $S L(2, \mathbb{Z})$ automorphism [Bourgine] ...
- mirror symmetry \leftrightarrow DIM algebra automorphism ?

Thank you!

