Probing the Seesaw Singlet Scalar in the Higgs boson's Rare Decays

高宇 Yu Gao

IHEP, CAS

SYSU, Guangzhou 01/22/2019

Outline

- The Higgs boson's role in the collider hunt of massive right-handed neutrinos
- A *remarkably* clean channel: $pp \rightarrow NN \rightarrow e^+e^+\mu^-\mu^-2v$
- Promising sensitivity to a small mixing between: the 'Higgs' boson & a seesaw scalar boson

Search for massive RHNs because...

- RHN explains the small active neutrino mass
- RHN is motivated in TeV new physics: helps restore Left-Right symmetry. comes handy in extra-U(1) theories.

the SM gauge

component

$$\nu_{\ell} = \sum_{m=1}^{3} U_{\ell m} \nu_{m} + \sum_{m'=1}^{n} V_{\ell m'} N_{m'}^{c}$$

$$\mathcal{L}_{\text{Int.}} = -\frac{g}{\sqrt{2}} W_{\mu}^{+} \sum_{\ell=e}^{\tau} \left(\sum_{m=1}^{3} \overline{\nu_{m}} U_{\ell m}^{*} + \sum_{m'=1}^{n} \overline{N_{m'}^{c}} V_{\ell N_{m'}}^{*} \right) \gamma^{\mu} P_{L} \ell^{-}$$
RHN mixes with active ν_{L} and the heavy $-\frac{g}{2 \cos \theta_{W}} Z_{\mu} \sum_{\ell=e}^{\tau} \left(\sum_{m=1}^{3} \overline{\nu_{m}} U_{\ell m}^{*} + \sum_{m'=1}^{n} \overline{N_{m'}^{c}} V_{\ell N_{m'}}^{*} \right) \gamma^{\mu} P_{L} \nu_{\ell}$
acquires couplings to the SM gauge bosons through its active $-\frac{g}{2M_{W}} h \sum_{\ell=e}^{\tau} \sum_{m'=1}^{n} m_{N_{m'}} \overline{N_{m'}^{c}} V_{\ell N_{m'}}^{*} P_{L} \nu_{\ell} + \text{H.c.}$
A. Atre, T. Han, S. Pascoli and B. Zhang, JHEP 05 (2009) 030

Collider search strategies

- N has a small ${\sim}|V_{\text{IN}}|^{\, \text{\! }}{}^2$ LH neutrino mixing may produce weakly
- May carry BSM couplings BSM mediators
- Leading production: Drell-Yan processes

and a few other ways ...

N pair production suppressed by mixing⁴

Vector-boson and/or lepton fusion: need lepton and/or VB luminosity

and a few **challenged** ways ...

N pair production suppressed by mixing⁴

Note : Z' are not mixing-suppressed; but: $(m_{Z'}/g_{z'})$ must be large

Or look *elsewhere*: go for seesaw partners instead, like H⁺,H⁺⁺

Vector-boson and/or lepton fusion: need lepton and/or VB luminosity

VBF has cleaner bkg, yet suffers from a small signal rate

VB-*l* fusion at e+e- collider or even at cosmic ray experiments: Limitation on E_{COM}

Heavy neutrinos, $m_N >$ *Weak scale*

- BSM Drell-Yan is likely very effective, has reconstructible W/Z/h bosons in N decay
- Lower masses testable with the SM Z, W, h (& mesons)

Y.Cai, T.Han, T.Li, R.Ruiz, 1711.02180

The Higgs boson as a mediator

- Like $Z \rightarrow Nv$ and $W \rightarrow Nl$, $h \rightarrow Nv$ is also $|V_{IN}|^2$ dependent
- Gluon/weak fusion has good production rate in pp collision

L-R mixing: correction to Higgs decays

LHC has sensitivity on the $h \rightarrow Nv \rightarrow llvv$

A reconstructible mass peak

$$h \rightarrow N v \rightarrow (ljj) v$$

A.Das, B.Dev, C.S.Kim, 1704.00880

A.Das, Y.Gao, T.Kamon, 1704.00881

New Physics in Higgs \rightarrow *RHNs*

- *h* can mix with BSM scalar *S*
- $h \rightarrow NN$ via its S component if S gives the RHN mass

Particularly helpful if we are yet waiting for another mediator to emerge...

A left-right model example: $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ EWSB via a L-R bi-doublet Φ & a R triplet Δ $\mathcal{V} = -\mu_1^2(\Phi^{\dagger}\Phi) - \mu_2^2(\tilde{\Phi}\Phi^{\dagger} + \tilde{\Phi}^{\dagger}\Phi) - \mu_3^2(\Delta_R^{\dagger}\Delta_R) + \lambda (\Phi^{\dagger}\Phi)^2 + \rho (\Delta_R^{\dagger}\Delta_R)^2 + \alpha (\Phi^{\dagger}\Phi)(\Delta_R^{\dagger}\Delta_R)$

 Δ couples to $N_{_{\rm R}}$ and generates its mass

$$\mathcal{L}_{\Delta} = Y_N L_R^T \Delta_R L_R$$

 $h - \Delta$ mixing leads to $h \rightarrow NN$ decays

$$M^{2} = 2 \begin{pmatrix} 2\lambda v^{2} & \alpha v v_{R} \\ \alpha v v_{R} & 2\rho v_{R}^{2} \end{pmatrix}$$

Maiezza, Nemevšek, Nesti 15'

Signal via the 125 GeV boson

- Experimentally confirmed: so far it looks quite SM-like.
- Insensitive to the scale of neutrino L-R mixing $|V_{IN}|^2$.
- Sensitive to `*Higgs*'-like mixing to other scalar(s)
- The SM's blessing: Higgs width is predicted small

$$\Gamma(h_1 \to NN) = \frac{1}{2} \sin^2 \alpha \cdot \frac{y_N^2 m_{h_1}}{8\pi} \left(1 - \frac{4m_N^2}{m_{h_1}^2} \right)^{3/2}$$

$$BF_{NN} = \frac{\Gamma_{h \to NN}}{\Gamma_h + \Gamma_{h \to NN}}$$

$$\uparrow$$

$$\sim 4 MeV: \text{ sensitive to BSM corrections.}$$
Higgs precision data much appreciated.

Can be type-I

Definitely new physics: LNV decays

 $\sqrt{s} = 13 \text{ TeV}$ $\mathcal{L} = 100 \text{ fb}^{-1}$

11

- NN \rightarrow I⁺I⁺jjjj is a smoking gun for Majorana N
- Same-sign lepton pair
- Mass peak at ljj (x2)

A probe for seesaw singlet scalar?

- Non-singlet scalars have (constrained) associates.
- Gives N a dynamically generated mass.
- Motivated from non-seesaw points of view
- Current data lenient on Higgs-singlet mixing

Singlet mixing:

Leaves *h*'s SM relative decay branching ratios unchanged

M.Farina, M.Perelstein, B.Shakya, 1310.0459: an NMSSM study $V_{\text{soft}} = m_u^2 |H_u|^2 + m_d^2 |H_d|^2 + m_S^2 |S|^2 + \left(\lambda A_\lambda S H_u \cdot H_d + \frac{1}{3} \kappa A_\kappa S^3 + \text{ h.c.}\right)$

For simplicity: a minimal case

- Can $h \rightarrow NN$ probe the *h*-*s* mixing to tiny levels?
- 'small coupling' assumption:

A small coupling between the `Higgs'-like Φ and a singlet S. Mostly decoupled Φ , S sectors if the mixing terms are small.

$$\mathcal{L} \supset V(\Phi) + V(S) + \lambda |\Phi|^2 S^2 + y_N S \bar{N}_R^c N_R + y_D \bar{L} \Phi N_R + c.c.$$

 $\begin{array}{ll} \text{Small coupling:} & \lambda v_{\Phi} v_S \ll m_h^2, m_s^2 & \left(\begin{array}{c} h_1 \\ h_2 \end{array}\right) = \left(\begin{array}{c} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{array}\right) \left(\begin{array}{c} \phi \\ s \end{array}\right) \\ & \text{\& neglecting } |\mathsf{H}|^2 \text{S terms} \end{array}$

- s can be light and both h₁, h₂ contribute to the signal.
- h_2 's non-NN decay channels are $|\sin\alpha|^2$ suppressed.

$$\sigma_{\text{sig.}} = (\sigma_{h_1} \cdot \text{BF}_{h_1 \to NN} + \sigma_{h_2}) \cdot \text{BF}_{\text{sig.}} A_{\text{eff}}$$
$$\Gamma(h_1 \to NN) = \frac{1}{2} \sin^2 \alpha \cdot \frac{y_N^2 m_{h_1}}{8\pi} \left(1 - \frac{4m_N^2}{m_{h_1}^2} \right)^{3/2}$$
$$\sigma(pp \to h_2) = \sin^2 \alpha \cdot \sigma(pp \to h) \big|_{m_h^{\text{kin.}} = m_{h_2}}$$

Both $h_1 \rightarrow NN$ branching and the $\sigma(h_2)$ scales ~ $|\sin\alpha|^2$ $h_2 \rightarrow NN$ branching ~ 100%

A signal of two same-sign, same-flavor lepton pairs

Y.Gao, M.Jin, K.Wang in prep.

Available w/wo LNV

* ΔL=0 requires N coupling to at least two flavors
** or taus.

NOTE: W_R & Z' do not contribute to this channel; Neutrino L-R mixing is needed!

$$\begin{split} \mathrm{BF}_{\mathrm{sig.}} &= \frac{1}{2} \sum_{i \neq j} \left(\frac{y_{D,i}^2}{\Sigma^2} \mathrm{BF}_j^l \right)^2 \text{ with LNV} \\ &+ \frac{1}{2} \sum_{i \neq j} \left(\frac{y_{D,i}^2}{\Sigma^2} \mathrm{BF}_j^l \right) \left(\frac{y_{D,j}^2}{\Sigma^2} \mathrm{BF}_i^l \right) \text{ w/o LNV} \\ &\sum_{i \neq j} \Sigma^2 \equiv y_{D,e}^2 + y_{D,\mu}^2 + y_{D,\tau}^2, \quad i, j = \{e, \mu\} \end{split}$$

The $pp \rightarrow NN \rightarrow e^+e^+\mu^-\mu^- 2\nu$ channel

- Does not guarantee LNV, but it is very clean
- Bkg contamination needs 4 W/W* $\rightarrow l v$ systems in the final state, mostly from

 $pp \rightarrow 4\tau$, WWZ(one wrong sign *l*), etc.

• & Jets' fake leptons see ATLAS H⁺⁺ search: CERN-EP-2017-198

Our selection criteria:

- 1. Exactly 4 leptons with $p_{\rm T}(l_{1,2}) > 10$ GeV and $p_{\rm T}(l_{3,4}) > 5$ GeV;
- 2 same-sign electrons and 2 same-sign muons and the electrons and muons are opposite charged, i.e., the charges and flavors of the leptons are required to be (μ[±], μ[±], e[∓], e[∓]);
- 3. No taus or b-jets; 4. post-selection BDT

Boosted Decision Tree (BDT) analysis

- Further separates signal from background
- Optimized for each m_N .
- TMVA: training 53 global and lepton/MET constructed variables

BDT demonstrates better kinematic differentiation at lower $m_{_N}$.

No signal observation dominates the BDT at all N masses

Preliminary: only h1 contribution included signal sample assume LNV topology. Combined LNV & non-LNV BDT in progress

A glance at future sensitivity

Very clean from bkgs

`signal' rate & significance refers to $m_N = 20$ GeV, plus a combined h_1 and NN decay branching at 10^-7.

Max. NN branching ~ 0.4%, $h \rightarrow NN$ branching ~ 3×10^{-5}

only h₁ contribution included

HL-LHC, 3 ab^{-1}	signal	4τ	WWZ
initial	16.4	$2.90 imes 10^5$	1.06×10^{3}
pre-selection	1.81	7.00	1.40
BDT > 0.428	1.72	2.00×10^{-2}	2.11×10^{-4}
σ_{stat}		2.65	

$FCC-hh/SppC$, 20 ab^{-1}	signal	4τ	WWZ
initial	1481	1.18×10^7	1.06×10^{5}
pre-selection	343	1176	344
BDT > 0.246	252	3.35	6.40×10^{-2}
σ_{stat}		41.2	

$$\sigma_{stat} = \sqrt{2\left[\left(N_s + N_b\right)\ln\left(1 + \frac{N_s}{N_b}\right) - N_s\right]}$$

HL-LHC 14 TeV 3ab ⁻¹	Combined decay branching	sinα ²	λ	Decoupled?
m _s =150 GeV v _s = 300 GeV	√ √ , 10 ⁻⁷	10 ⁻⁵	10 ⁻³	\checkmark
m _s =1 TeV v _s = 2 TeV		10-3	0.1	×
FCC/SppC	Combined			
100 TeV 20 ab ⁻¹	decay branching	sinα ²	λ	Decoupled?
100 TeV 20 ab^{-1} m _s = 150 GeV v _s = 300 GeV	decay branching	sinα ² 10 ⁻⁶	λ 10 ⁻⁴	Decoupled? √

 $h_1 + h_2$ contributions: very good sensitivity for weak-scale m_s

Summary

- The Higgs boson is a viable mediator in RHN search
- $pp \rightarrow h \rightarrow NN$ has a very clean & promising same-flavor, same-sign double lepton-pair channel, w & wo LNV.
- Can interpret $h \rightarrow NN$ sensitivity as a probe for the Higgs mixing/coupling to the N mass generating scalar.
- High sensitivity derived for a minimal toy-model's `decoupled' Higgs, singlet sectors, in particular if the singlet mass ~ O(m_h)
- Applicable to realistic, 'non-decoupled' models