超级t-Charm工厂上的物理研 究及装置预研进展

郑阳恒

zhengyh@ucas.edu.cn

(代表 "STCF Steering Committee") (代表 "STCF Steering Committee") (代表 "STCF Steering Committee") University of Chinese Academy of Sciences

粒子物理前沿研讨会, 2018年1月21-25日, SYSU

Outline

超級t-Charmエ厂 Super Tau Charm Facility (STCF)

 Some Highlight Physics topics
 Conceptual Design status
 Funding Status & Potential sites
 Strategy & Prospect of Science-Technology Review

Broad Physics at τ-c Energy Region

- Unique features : Rich of resonance, Threshold characteristics, Quantum Correlation
- Abundant physics

- Hadron form factors
- Y(2175) resonance
- Mutltiquark states with s quark, Zs
- MLLA/LPHD and QCD sum rule predictions

- Light hadron spectroscopy
- Gluonic and exotic states
- Process of LFV and CPV
- Rare and forbidden
 decays
- Physics with τ lepton

- XYZ particles
- **f**_D and **f**_{Ds}
- D_0 - D_0 mixing
- coherent D mesons decays
- Charm baryons

BESIII国际合作组

Europe (16)

Political Map of the World, June 1999

Germany: Univ. of Bochum, Univ. of Giessen, GSI Univ. of Johannes Gutenberg Helmholtz Ins. In Mainz Russia: JINR Dubna; BINP Novosibirsk Italy: Univ. of Torino, Frascati Lab, Univ. of Ferrara Netherland: KVI/Univ. of Groningen Sweden: Uppsala Univ. Turkey: Turkey Accelerator Center

Anterctica

Pakistan (3)

Univ. of Punjab COMSAT CIIT India (1)

THEFT

来自14个国家的67个合作单 位合作成员约500人

Mongolia (1)

Institue of P& Korea (1)

Seoul Nat. Univ.

Japan (1)

Tokyo Univ.

IHEP, CCAST, UCAS, Shandong Univ., Univ. of Sci. and Tech. of China Zhejiang Univ., Huangshan Coll. Huazhong Normal Univ., Wuhan Univ. Zhengzhou Univ., Henan Normal Univ. Peking Univ., Tsinghua Univ., Zhongshan Univ., Nankai Univ. xi Univ., Sichuan Univ., Univ. of South China Hunan Univ., Liaoning Univ. Nanjing Univ., Nanjing Normal Univ. Guangxi Normal Univ., Guangxi Univ. Suzhou Univ., Hangzhou Normal Univ. Lanzhou Univ., Henan Sci. and Tech. Univ. Beihang Univ., Fudan Univ.

China(37)

Publication of BESIII

Up to now: 222 publications, 48 PRL, Excellent in both number and quality http://bes3.ihep.ac.cn/pub/physics.htm ~20 PhD / year

Some limitations for BEPCII/BESIII

- **BEPCII/BESIII** have run 9 years, and are playing a leading role in tau-charm physics area.
- Limited by length of storage ring, no space and potential for the upgrade.
- Physics study limited by the Statistics (luminosity),
 CME
- Challenged by Belle II
- **BEPCII/BESIII** will end her mission in 5 7 years (?)

A Super τ-charm Facility is the nature extension and a viable option for a post-BEPCII HEP project in China

BEPCII vs STCF

BEPCII

Peak luminosity 0.6-1×10³³ cm⁻²s⁻¹ at 3.773 GeV

Conversion of Example 1 Energy range $E_{cm} = 2 - 4.6 \text{ GeV}$

☐ No Polarization

Designed STCF

Peak luminosity 0.5-1×10³⁵ cm⁻²s⁻¹ at 4 GeV

Energy range E_{cm} = 2–7 GeV

Single Beam Polarization (Phase II)

Highlight 1:Matter-Antimatter Asymmetry

CPV in K, B meson system \Rightarrow 1980, 2008

Nobel Prize

What about CPV in Baryon & Lepton system?

CPV in Hyperon Decays

- ◆ In 1958, Okubo: CPV in hyperon-antihyperon allows ⇒
 "Okubo effect"(Direct CPV) Phys. Rev. 109, 984 (1958).
- In 1959, Pais: extended Okubo's proposal to asymmetry parameters in Λ and <u>Λ</u> decays. Phys. Rev. Lett. 3, 242 (1959).
- In the '80s, a number of calculations were made. CKM predictions, CPV in Λ: 10⁻⁴ ~ 10⁻⁵
- One example: Phys. Rev. D34, 833 (1986).

PHYSICAL REVIEW D

VOLUME 34, NUMBER 3

1 AUGUST 1986

Hyperon decays and CP nonconservation

John F. Donoghue Department of Physics and Astronomy, University of Massachusetts, Amherst, Massachusetts 01003

Xiao-Gang He and Sandip Pakvasa Department of Physics and Astronomy, University of Hawaii at Manoa, Honolulu, Hawaii 96822 (Received 7 March 1986)

We study all modes of hyperon nonleptonic decay and consider the *CP*-odd observables which result. Explicit calculations are provided in the Kobayashi-Maskawa, Weinberg-Higgs, and leftright-symmetric models of *CP* nonconservation.

Spin polarization of Λ in $J/\psi \rightarrow \Lambda\Lambda$

0.2

0.

-0.1

-0.2

_1

 $\mu(\cos\theta_{\Lambda})$

BES <u>arXiv:1808.08917</u>

1.31 billion J/ ψ events

Quantum correlation in Λ pair

	Parameters	s This work	Previous results
	α_{ψ}	$0.461 \pm 0.006 \pm 0.007$	0.469 ± 0.027 ¹⁴
	$\Delta \Phi$	$(42.4\pm 0.6\pm 0.5)^\circ$	-
(a) $p\pi^-\bar{p}\pi^+$	α_	$0.750 \pm 0.009 \pm 0.004$	0.642 ± 0.013 ¹⁶
and the second sec	$lpha_+$	$-0.758 \pm 0.010 \pm 0.007$	$-0.71 \pm 0.08 ^{~16}$
	$\bar{\alpha}_0$	$-0.692\pm 0.016\pm 0.006$	_
+ data	A_{CP}	$-0.006 \pm 0.012 \pm 0.007$	$0.006 \pm 0.021 \ ^{\rm 16}$
•••••••••••••••••••••••••••••••••••••	$\bar{\alpha}_0/\alpha_+$	$0.913 \pm 0.028 \pm 0.012$	_
		CP test	
		$A_{CP} = \frac{\alpha + \alpha_+}{\alpha \alpha_+}$	
			10

A_{CP} Sensitivities in STCF

- **♦**40 trillion J/ψ events \Rightarrow ΔA_{CP} ~ 10⁻⁴ 10⁻⁵
 - +Luminosity optimized at J/ψ resonance
 - Luminosity of STCF: × 100
 - ◆Beam energy trick ⇒ small beam energy spread ⇒
 J/ψ cross-section: × 10
 - ♦ 2 3 years data taking
 - **No polarization beams are needed**
- Challenge: Systematics control

Full simulation results are necessary!

CPV in τ decays

- Measurement on the angular CPV asymmetry is desirable
- Use T-odd rotationally invariant products in >=2 hadrons, such as $\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau} / \mathbf{k}^- \pi^0 \nu_{\tau}, \quad \tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_{\tau} / \mathbf{K}^- \pi^+ \pi^- \nu_{\tau} : P_2^{\tau} \cdot (\vec{P}_{\pi^+} \times \vec{P}_{\pi^0})$
- Polarized of τ and beam are necessary
- Figure of Merits

merit = luminosity $\times \bar{w}_Z \times$ total cross section \propto luminosity $\times (w_1 + w_2)$ $\times \sqrt{1 - a^2}a^2(1 + 2a)$,

 Y. S. TSAI, PRD 51 (1995) 3172

 BESIII @ 4.25 (10³³cm⁻²s⁻¹)

 FOM=1

 STCF @ 4.25 (10³⁵cm⁻²s⁻¹)

 FOM=100

 SuperKEKB @ (8x10³⁵cm⁻²s⁻¹)

R/QCD Highlights

Baryon Form Factors

for B=p: JLAB & e⁺e⁻ are complementary Crossing symmetry:

 $\langle N(p')|j^{\mu}|N(p)\rangle \rightarrow \langle \overline{N}(p')N(p)|j^{\mu}|0\rangle$

$$J^{\mu} = \langle N(p') | j^{\mu} | N(p) \rangle = e\overline{u}(p') \left[\gamma^{\mu} F_{1}(q^{2}) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M} F_{2}(q^{2}) \right] u(p)$$

14

$e^+e^- \rightarrow p\overline{p}, n\overline{n}, \Lambda\overline{\Lambda}$ threshold

The threshold production of baryon pair

STCF: 100× more statistics will much enhance the understandings of these 'unexpected' threshold enhancement! (Study e⁺e⁻ $\rightarrow p\overline{p}, n\overline{n}, \Lambda\overline{\Lambda}, \Sigma\overline{\Sigma}, \Xi\overline{\Xi}, \Omega\overline{\Omega}, \Lambda_c\overline{\Lambda_c}, \Sigma_c\overline{\Sigma_c}, \Xi_c\overline{\Sigma_c}, \Xi_c\overline{\Sigma_c}, \Omega_c\overline{\Omega_c} \dots$ @threshold)

极化依赖的Collins碎裂函数测量

J. C. Collins, Nucl.Phys. B396, 161 (1993)

Collins Fragmentation Function (FF)

SIDIS

$$D_{hq^{\dagger}}(z, P_{h\perp}) = D_1^q(z, P_{h\perp}^2) + H_1^{\perp q}(z, P_{h\perp}^2) \frac{(\hat{\mathbf{k}} \times \mathbf{P}_{h\perp}) \cdot \mathbf{S}_q}{zM_h},$$

D₁: the unpolarized FF H₁: Collins FF

 \rightarrow describes the fragmentation of a transversely polarized quark into a spinless hadron *h*.

 \rightarrow depends on $z = 2E_h/\sqrt{s}$, $\mathbf{P}_{h\perp}$

→leads to an azimuthal modulation of hadrons around the quark momentum.

Transversity 🛞 Collins FF

e+ e-

Collins FF \otimes Collins FF e^+ q^* q FF h_1 h_1 h_2 h_3 h_4 h_4

Collins effect at BESIII

 $A_{\rm UL}$, $A_{\rm UC}$ enote asymmetries for UL and UC ratios, respectively $1.5 = \begin{bmatrix} 1.5 \\ 0.5 \end{bmatrix} = \begin{bmatrix} 1.5 \\ 0.$

- ~62 pb ⁻¹ @3.65GeV
 - +Continuum region
- Nonzero Collins effect at BESIII
- Basically consistent with predictions from PRD 88. 034016 (2013).
- important inputs for understanding the spin structure of the nucleon
- valuable to explore the energy evolution of the spin-dependent fragmentation function.

Global Analysis on Collins FF

Anselmino et al., PRD 87, 094019 (2013)

Using data from HERMES, COMPASS, Belle

Transversity

Collins pion

The Q² evolution of Collins FFs was assumed following the extrapolation in the unpolarized FF, and this has not been validated.

- Low Q² data from e⁺e⁻ collider is useful.
- BEPCII / STCF
 - Similar Q² coverage with SIDIS in EicC

Charmonium-Like Physics (XYZ)

Fruitful results in past decade, a new territory to study exotic hadrons

• τ -C Factory : $e^+e^- \rightarrow Y/\psi \rightarrow Z_c^+ X$

- B factory : Total integrate effective luminosity between 4-5 GeV is 0.23ab⁻¹ for 50 ab⁻¹ data
- τ-C factory : scan in region 4-5 GeV, 10 MeV/step, every point have 20 fb⁻¹/year, 10 time of Belle II for 50 ab⁻¹ data
- τ-C factory have much higher efficiency than B Factory

• **B Factory : ISR, B decay**

cLFV Decay $\tau \rightarrow \mu \gamma$

- Charge Lepton Flavor Violation $\tau \rightarrow \gamma \mu$
 - New physics beyond SM, constraint many modes.
 - Current limit: 4.4×10-8 at Babar with 0.9×109 τ pairs
- Cross section grows from 0.1 nb near threshold to 3.5 nb to 4.25 GeV.
 - At Bellell:
 - $10^{10} \tau$ pairs/year
 - ISR background dominant: $e+e- \rightarrow \gamma \tau + \tau -$
 - Expected limit: 3×10−9@50 ab⁻¹
 - At STCF:
 - 7.0×109 *τ* pairs/year at 4.25 GeV
 - $e+e- \rightarrow \gamma \tau + \tau -$ background not contribute at 4.25 GeV.
 - Dominant background: $\gamma \mu + \mu -$, $\tau \rightarrow \pi v$
 - 4.4×10;n @ 6.34 ab;o estimated at BESIII
 - Much lower $\mu l \pi$ misld rate is needed
 - Fast simulation on this process is progressing

Does not contribute below $\sqrt{s} \approx 4m_{\tau}/\sqrt{3} \approx 4.1$ GeV. 22

STCF CDR status

Parameters and Plan of STCF

Parameters	Phase 1	Phase 2
Circumference/m	600-800	600-800
Optimized Beam Energy/GeV	2	2
Energy Range/GeV	1-3.5	1-3.5
Current/A	1.5	2
Emittance $(\varepsilon_x / \varepsilon_y)$ /nm·rad	5/0.05	5/0.05
β Function @ IP $(\beta_x^*/\beta_y^*)/mm$	100/0.9	67/0.6
Collision Angle(full θ)/mrad	60	60
Tune Shift ξ_y	0.06	0.08
Hour-glass Factor	0.8	0.8
Luminosity/×10 ³⁵ cm ⁻² s ⁻¹	~0.5	~1.0
Dynamic Aperture	15σ	15σ
Total Lifetime	~1800s	~1800s

Basic Features:

Large Piwinski angle collision + crabbed waist Siberia snake for polarization **Strategy**: (Phase 0) Pilot: 0.5 × 10³⁵ (Phase I) Nominal: 1.0×10^{35} (Phase II) Polarized beam **Final:** 90% Polarization einjection, 80% Polarization **@IP**

Upgrade: Polarized e+

A quasi-7BA-arc Lattice

More nonlinear cancellation in IR

Achieved Parameters

Collider with 7BA-based Arc

Parameters now

Parameters	Phase 1
Circumference/m	~400
Beam Energy/GeV	2
Current/A	1.5
Emittance $(\varepsilon_x / \varepsilon_y)$ /nm·rad	2.4/0.03
β Function @ IP $(\beta_x^*/\beta_y^*)/mm$	66.5/0.55
$\mathbf{v}_{\chi} / \mathbf{v}_{y}$	17.2/10.7
Collision Angle(full θ)/mrad	60
Tune Shift ξ_y	0.06 (goal)
Hour-glass Factor	0.8 (goal)
Luminosity/×10 ³⁵ cm ⁻² s ⁻¹	~0.8 estimated

- Raw results, needs more work
- Interaction region, tunes and tune shift should be optimized
- Consider much longer rings (600-800m), may achieve much better performance of emittance
 and allow enough space for 5
 Siberian snakes or more (if really
 needed), high polarization may
 be available.

Detector Layout

PXD

- Material budget ~0.15%X₀ / layer
- $\sigma_{xy}=50 \ \mu m$

MDC

- $\sigma_{xy}=130 \ \mu m$
- $\frac{dE}{dx} < 7\%$, $\sigma_p/p = 0.5\%$ at 1 GeV

PID

 π/K (and K/p) 3-4σ separation up to 2GeV/c

EMC

Energy range: 0.02-2GeVAt 1 GeVσ_E (%)Barrel(Cs(I):2Endcap (Cs):4MUD

• μ/π suppression power >10

General Consideration of Detector

- □ Much larger radiation tolerance, especially at IP and forward regions
- **Efficient event triggering, exclusive state reconstruction and tagging**
- The Systematic uncertainty control
- Reasonable cost
- STCF Detector team has been formed. (Currently, USTC team is playing the leading role.)
- **Lots of progress on Tracking, PID, EMC and Muon system R&D.**
 - Tracking: Several Micro-Pattern Detector (DEPFET, MAPS, GEM/MicroMegas/ uRWELL) Technologies for inner tracking are testing.
 - **PID: RICH/DIRC for Barrel and DIRC-like TOF for EndCap**
 - **EMC:** CsI(Tl), CsI, BSO, PbWO4, LYSO
 - **D** Muon Counter with precise timing ($\sigma_T < 80$ ps, Space reolution~0.6 mm)

Strategy & Activities

CDR \rightarrow **TDR** \rightarrow project application \rightarrow construction \rightarrow commissioning

- Strategy: focus on CDR (2 years) and TDR (6 years) depend on the available resources. Open to the construction site.
- Webpage: http://wcm.ustc.edu.cn/pub/CICPI2011/futureplans/
- Domestic Workshops (2011, 12, 13, 14, 16)
- International Workshops (2015, 18)
- Report to USTC Scientific Committee and USTC presidents
- Report to Hefei High-tech Development Zone
- Report to Anhui Development Planning Commission
- Form the Organization for the project
- Regular weekly meetings for Accelerator/Detector Design!

Activities

W	Work	Wo	Workshop on Phy	ysics a	at Future High Intensity Collider @ 2-7GeV in China	-
Sun at Il	15-17 Jui University Asia/Shanghai	19 Fe Instit _{Asia/Sha}	13-16 January 2015 USTC Asia/Shanghai timezone			
	Timetable Registrat	Over Scie	Overview Scientific Programme Timetable Contribution List	Tue 13/ 08:00	/01 Wed 14/01 Thu 15/01 Fri 16/01 All days Print PDF Full screen Detailed view Filter	Filter
(L Regist List of reg The Work	Cont	Author index Registration Registration Form		USTC 08:00 - 08:30 Welcome USTC 08:30 - 08:40 Introduction to Future High Intensity Collider @ 2-7 GeV in China Prof. Zhengguo ZHAO	o ZHAO 9:00 - 09:20 Jianping MA 9:20 - 09:40
(The Acco 宿)	Regi L R List	List of registrants	09:00	XYZ from B factories [Belle, Babar] and prospects at Bellell Roman MIZUK USTC 09:05 - 09:35 XYZ results from hadron colliders Dr. Liming Zhang ZHANG	ua ZHU 9:40 - 10:00 Haibo LI
(10:00	USTC 09:35 - 10:05 Coffee break 000000000000000000000000000000000000	0:00 - 10:20
				11:00	USTC 10:25 - 10:55 Charmonium physics at PANDA Frank NERLING USTC 10:55 - 11:25	0:40 - 11:00 ZHANG
				12:00	Higher charmonium states Ce MENG USTC 11:25 - 11:55 LQCD results on hadron spectroscopy Ying CHEN	Jianbei LIU 1:10 - 11:20
					USTC 11:55 - 12:25	30

USTC Scientific Committee Review

USTC president agreed, and scientific committee endorsed supporting $R&D \rightarrow 10$ M RMB

•

Organization

Tentative Plan & Estimated Budget

	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030- 2040	2041- 2042
Form International Collaboration														
Conception Design Report (CDR)														
Technical Design Report (TDR)														
Construction														
Commissioning														
Upgrade														

A unique precision frontier in the world for 30 years!

R&D budget: 200M RMB Total budget: 4B RMB

单位:亿元					
eLinac	4.0+1.0 (阻尼环)				
Electron ring	7.0				
Positron ring	7.0				
束线	1.2				
实验谱仪	8.0				
低温	1.0				
配套设施	1.8				
装置土建	6.0				
不可预见	3.0				
合计	40				

International Collaboration

- Pre-Agreement of Joint effort on R&D, details are under negotiation
- Joint workshop between China, Russia, and Europe
 - 2018 UCAS (March), Novosibirsk (May), Orsay (December)
 - 2019

Science & Technology Review

Two international workshop : Hefei (2015), Beijing(2018)

- More than 100 participants, more than 50% of them are from oversea
- Presented project status, overview the physics potential and discuss the design and key technology of accelerator and detection

Joint workshop on future τ-c factory

Joint Workshop on **future tau-charm factory**

December 4-7, 2018 Laboratoire de l'Acélérateur Linéaire, **Orsay, France**

Home

COMMITTEES

Local Organising Committee

Program Committee

International Advisory Committee

PROGRAM

REGISTRATION

Home

The workshop will be dedicated to the discussion of the
future tau-charm factory projects. The physics case will be
revisited via joint theory and experiment contributions,
together with detailed discussions on the required
accelerator and detector design. The two existing proposals
– the one in Novosibirsk and the one in Hefei – will give a
base for discussions.

The first day of the workshop will be dedicated to expected physics reach, the second day to the accelerator discussions, while the third day to the detector for the future tau-charm factory.

PRACTICAL INFORMATION

-				
	ra	11	0	£
	I C	v	C	

Lodging

Social events

Poster

CONTACT US

Institutions shown Interest

- University of Science and Technology of China
- Institute of High Energy Physics, CAS
- Institute of Theoretical Physics, CAS
- Tsinghua University
- University of Chinese Academy of Sciences
- Shandong University
- Shanghai Jiaotong University
- Peking University
- Zhejiang University
- Nanjing University
- Nankai University
- Wuhan University
- Central China Normal University Lanzhou University
- University of Southern China
- Beijing University of Aeronautics and Astronautics
-
- Institute for Basic Science, Daejeon, Korea
- Dubna, Russia
- Budker Institute and Novosibirsk University, Russia
- T. Shevchenko National University of Kyiv, Kyiv, Ukraine
- University Ljubljana and Jozef Stefan Institute Ljubljana, Slovenia •
- Jozef Stefan Institute Ljubljana, Slovenia

- Stanford University, USA
- Wayne State University, USA
- Carnegie Mellon University, USA
- GSI Darmstadt and Goethe University Frankfurt,

Germany

- Goethe University Frankfurt, Germany
- GSI Darmstadt, Germany
- Johannes Gutenberg University Mainz, Germany
- Helmholtz Institute Mainz, Germany
- LAL (IN2P3/CNRS and Paris-Sud University), Orsay, France
- Sezione di Ferrara, Italy
- L'Istituto di Fisica Nucleare di Torino, Italy
- L'Istituto di Fisica Nucleare di Firenze, Italy
- Scuola Normale Superiore, Pisa, Italy
- University of Silesia, Katowice, Poland
- Laboratori Nazionali di Frascati, Italy
- INFN, Padova, Italy
- University of Pavia, Pavia, Italy
- University of Parma, Italy

Pre-Conceptual Design Report

45

ø

Contents

9	1	Phy	sics Program at HIEPAF	4
10		1.1	Introduction	4
11		1.2	Charmonium- and XYZ-State Physics	5
12			1.2.1 Charmonium States	6
13			1.2.2 XYZ states	9
14		1.3	Physics of Charmed Hadrons	12
15			1.3.1 V _{cd} and V _{cs}	12
16			1.3.2 $D^0 - \overline{D}^0$ mixing	13
17			1.3.3 CP violation	13
18			1.3.4 Rare and forbidden decays	14
19		1.4	τ-Physics	16
20		1.5	Production of Light Hadrons in Non-Resonance Regions	18
21		1.6	Search for Possible New Physics	20
22		1.7	Remarks and Notes	24
23		1.8	QCD Study in the Low Energy Region (Sections of 1.1-1.7 are provided by Ma Jianping. Section	
24			1.8 is provided by Wenbiao. Some contents in section 1.5 and 1.8 may be combined later!!)	25
25			1.8.1 Introduction	25
26			1.8.2 R value and strong coupling constant $\alpha_r(M_z)$	25
27			1.8.3 Charm quark mass	26
28			1.8.4 Inclusive hadron production	27
	2	Con	centual Design of the Detector	33
	-	2.1	Overview	33
31			2.1.1 Introduction	33
20			2.1.2 Physics Remuirements (assigned to Peng Haining)	33
33			2.1.3 General Considerations	33
34			2.1.4 Expected Performances	34
35		2.2	The Inner Silicon Detector (ISD)	35
36			2.2.1 Introduction	35
37			2.2.2 Options for vertex detector	35
38			(1) STAR Heavy Flavor Tracker	35
39			(2) Belle-II Vertex Detectors	38
40			2.2.3 Conceptual Design for ISD	39
41			(1) Performance of ISD	41
42			2.2.4 Summary	43
43		2.3	Main Tracing Detectors (MTD) (assigned to Liu Jianbei)	44
44		2.4	Particle Identification (PID)	44

	2.4.1	Introduction	44
	2.4.2	Detector Options	45
		(1) TOF (Some formulae and words are missing in the doc file provided by Li Cheng.	
		Colored in blue!!!)	45
		(2) Cherenkov detector	45
	2.4.3	Banel	47
		(1) TOF + Threshold Cherenkov Detector	47
		(2) TOP	49
	2.4.4	Endcap	49
		(1) RICH	49
		(2) TOF+ACC	50
	2.4.5	Conceptual Design and Expected Performance	50
	2.4.6	Summary	51
2.5	Electro	omagnetic Calorimeter (EMC)	51
	2.5.1	General Consideration	51
	2.5.2	Crystal Options	52
		(1) CsI Crystal	52
		(2) LYSO Crystal	52
		(3) PbWO4 Crystal	53
		(4) BSO Crystal	53
	2.5.3	Readout Methods	53
		(1) Silicon Photodiodes	56
		(2) Avalanche Photodiodes	56
	2.5.4	Barrel and Forward Calorimeters (Design)	56
	2.5.5	Summary	58
2.6	Muon	Counter	58
	2.6.1	General Considerations	58
	2.6.2	Possible Technical Choices	59
	2.6.3	R&D of Timing RPC	61
	2.6.4	Conceptual Design	61
	2.6.5	Summary	64
2.7	Superc	vonducting Solenoid	64
	2.7.1	Main Requirements	64
	2.7.2	Design of the Solenoid	64
	2.7.3	Cryogenics	66
	2.7.4	Power Supply and Quench Protection	66
2.8	Front 1	End Read Out Electronics (Qi An, Ge Jin)	66
2.9	Trigge	r System (Zhengan Liu, Shubin Liu)	66

83		2.10 Data Acquisition System	66
84		2.11 Software (Huaimin, Yanwen, SDU??)	68
85		2.11.1 Detector Simulation	68
85		2.11.2 Data Reconstruction and Calibration	68
87		2.12 Summary (???)	68
88	3	Conceptual Design of the Accelerator (Qin Qing, Wang Lin)	69
89		3.1 Introduction for the General Consideration C an Interdisciplinary Mode	09
90		3.1.1 Layout of the Accelerator	65
91		3.1.2 Injection Region	69
92		3.1.3 Storage King	05
93		3.1.4 Interaction Region	69
94		3.2 Accelerator Parameters	69
95		3.3 Vacuum System	69
95		3.4 Lattice	69
97		3.5 Beam-Beam Effect	69
98		3.6 Life Time of the Beam	69
99		3.7 Collective Effect	69
100		3.8 Longitudinal Polarization	69
101		3.9 Feedback System	69
102		3.10 Injection System	69
103		3.11 Summary	69
104	4	Beam Injection System of the Accelerator (assigned to ???)	70
105		4.1 The Linarc	70
105		4.1.1 RF System of the Linac	70
107		4.1.2 The Beam Focusing System	70
108		4.2 Beam Injection	70
109		4.3 Polarized Electron Source	70
110	5	Cost Estimation	71
m		5.1 Accelerator (Qin Qing, Wang Lin)	71
112		5.2 Detector (Li Cheng, Jianbei)	71
118		5.3 Civil Engineering (???)	71
	6	Consideration of Site Selection (Theo Theorem)	72
114	v	Constant anon of our ordering (Thus ThenEEns)	1
115	7	Summary (Shen Xiaoyan, Zhao Zhengguo and Zhao Guangda)	73
	0	CUNOUI EDCMENTS	
116		AUDINIUM LINER WITH A STATE AND A STATE AN	- 14

Candidate site 1: 广东

Candidate site 2: 安徽合肥

One of three integrated national science centers, which will play important role in 'Megascience' of China in near future

- Pay a lot of attention on accelerator facilities
- Hefei Advanced light source is under design
- STCF is listed in future plan

- University of Science and Technology of China (USTC)
- National Synchrotron Radiation Lab and Hefei Light Source, operated by USTC
 - The only National Lab operated by University in China. (Totally Four officially approved National Labs in China)

Candidate site 3: 北京怀柔

Planned Scientific City : 100.9 km² (One of three integrated national science centers)

Synchrotron radiation light source

So far, no dedicated facility for particle physics yet!

Summary

Super τ-c Facility (STCF): nature extension and a viable option for a post-BEPCII project

Status of STCF project in China:

- **– Physics:** Rich & unique for physics with **c** quark and τ leptons.
- Detector & Electronics: Significant progress in R&D at USTC
- Accelerator: Design group is formed and working hard, progress are ongoing. More experts are needed.
- Funding: 10M RMB for initial R&D from USTC; More communication to CAS and Local governments
- An international collaboration is under preparing

Strategy & Plan

- Complete CDR in 2 years, TDR in 6 years
- Construction site: Currently open

Welcome to join the effort

Thank you!

Backup Slides

Energy scan 2014-2015 at BESIII

World leading scan from 2.0 GeV – 3.08 GeV energy region
 Nucleon and Hyperon form-factor available
 18-11-27 李海波

Rich Physics programs @ STCF

Unique for physics with c quark and τ leptons, important playground for study of QCD, exotic hadrons and search for new physics.

- Charmonium & Chramonium-like XYZ (Luminosity & CME)
- Charmed hadrons (Luminosity & CME)
- τ Lepton CP (Luminosity & polarized beam)
- New physics (Luminosity)
- R / QCD (Luminosity & CME)
- ...

More information can be found in Bingsong Zou's "Physics

- Summary of STCF", presented at Joint Workshop of future
- tau-charm factory, December 2018.

Integrated Luminosity of STCF

• Assume running time 9 months/year, data taking efficiency 90%

 10^{35} cm⁻²s⁻¹ × 86400s × 270 days × 90% ~ **2.0ab⁻¹/year**

10 years data taking, total 20 ab⁻¹ conservatively

Excellent opportunities for the τ -charm physics

- B factory: Total integrated effective luminosity between 2-7 GeV is ~1.5ab⁻¹ for 50 ab⁻¹ data.
- **STCF** is expected to have higher detection efficiency
 - e.g. @4.26 GeV for $\pi^{+}\pi^{-}J/\psi$, $\varepsilon_{\text{BESIII}} = 46\%$, $\varepsilon_{\text{Belle}} = 10\%$
- **STCF** has low backgrounds for productions at threshold.

5

Göran Fäldt, AK PLB772 (2017) 16

$$d\sigma \propto \mathcal{W}(\boldsymbol{\xi}) \ d\cos\theta \ d\Omega_1 d\Omega_2$$

$$\Lambda \rightarrow p\pi^-: \ \Omega_1 = (\cos\theta_1, \phi_1) \qquad \alpha_- = \alpha_1$$

$$\overline{\Lambda} \rightarrow \overline{p}\pi^+: \ \Omega_2 = (\cos\theta_2, \phi_2) \qquad \alpha_+ = \alpha_2$$

$$\boldsymbol{\xi} : (\cos\theta, \Omega_1, \Omega_2)$$

$$\mathcal{W}(\boldsymbol{\xi}) = 1 + \boldsymbol{\alpha}_{\boldsymbol{\psi}} \cos^2\theta \qquad \text{Spin correlations}$$

+
$$\alpha_1 \alpha_2 \left(\mathcal{T}_1(\boldsymbol{\xi}) + \sqrt{1 - \alpha_{\boldsymbol{\psi}}^2} \cos(\boldsymbol{\Delta \Phi}) \mathcal{T}_2(\boldsymbol{\xi}) + \alpha_{\boldsymbol{\psi}} \mathcal{T}_6(\boldsymbol{\xi}) \right)$$

 $+\sqrt{1-\boldsymbol{\alpha_{\psi}}^{2}\sin(\boldsymbol{\Delta\Phi})\sin\theta\cos\theta\left(\boldsymbol{\alpha_{1}}\sin\theta_{1}\sin\phi_{1}+\boldsymbol{\alpha_{2}}\sin\theta_{2}\sin\phi_{2}\right)}$

Observation of the spin polarization of Λ hyperons in the $J/\psi \to \Lambda \overline{\Lambda}$ decay

Time-Like Baryon Form Factors

Fundamental properties of the baryon
 QCD predictions:

At large q², absolute value of FF(q²)=FF(-q²)

Experiment: time-like FF much larger than space-like FF

◆ Squared ratio of n/p form factors ≈ 0.25

Problem: only very poor data for neutron form factor

At present, the anomalous magnetic moment of the muon $a_{\mu} = (g - 2)_{\mu}/2$ are known with an uncertainty of about one half per million!

Impact on $(g_u-2)/2$

High Luminosity of STCF will largely improve the SM precisions

e⁺e⁻ → Baryon-Antibaryon Pair

Born cross section:

$$e^{+}e^{-} \leftrightarrow N\overline{N}, \Lambda\overline{\Lambda}, \dots$$

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^{2}\beta}{4m_{B\overline{B}}^{2}} \left[\left(1 + \cos^{2}\theta\right) \left| G_{M}(m_{B\overline{B}}) \right|^{2} + \frac{1}{\tau} \sin^{2}\theta \left| G_{E}(m_{B\overline{B}}) \right|^{2} \right]$$

$$\tau = \frac{m_{B\overline{B}}^{2}}{4M_{B}^{2}} \quad \beta = \sqrt{1 - \frac{1}{\tau}}$$

$$Coulomb \text{ enhancement factor}$$

$$C_{charged} = \frac{\pi\alpha/\beta}{1 - \exp(-\pi\alpha/\beta)} \frac{(\beta \to 0)}{\pi\alpha/\beta} \pi\alpha/\beta$$

$$C_{neutral} = 1$$
in point-like approx
$$integrated$$

$$cross section: \quad \sigma_{d\overline{u}}(m_{u\overline{u}}) = \frac{4\pi\alpha^{2}\beta C}{3m^{2}} \left[\left| G_{H}(m_{d\overline{u}}) \right|^{2} + \frac{1}{2\tau} \left| G_{E}(m_{d\overline{u}}) \right|^{2} \right] = \frac{4\pi\alpha^{2}\beta C}{3m^{2}} \left| G_{eff}(m_{u\overline{u}}) \right|^{2} (1 + 1/2\tau)$$

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^{2}\beta}{4m_{B\overline{B}}^{2}} \left[\left| G_{H}(m_{d\overline{u}}) \right|^{2} + \frac{1}{2\tau} \left| G_{E}(m_{d\overline{u}}) \right|^{2} \right] = \frac{4\pi\alpha^{2}\beta C}{3m^{2}} \left| G_{eff}(m_{u\overline{u}}) \right|^{2} (1 + 1/2\tau)$$

$$\frac{d\sigma}{d\Omega} = \frac{4\pi\alpha^{2}\beta C}{3m^{2}} \left[\left| G_{H}(m_{d\overline{u}}) \right|^{2} + \frac{1}{2\tau} \left| G_{E}(m_{d\overline{u}}) \right|^{2} \right] = \frac{4\pi\alpha^{2}\beta C}{3m^{2}} \left| G_{eff}(m_{u\overline{u}}) \right|^{2} (1 + 1/2\tau)$$

effective form factor:

$$\left|G_{eff}\right|^{2} = \frac{\left|G_{M}\right|^{2} + \frac{1}{2\tau}\left|G_{E}\right|^{2}}{1 + \frac{1}{2\tau}}\sigma_{B\bar{B}}\left(m_{B\bar{B}}\right) \implies \left|G_{eff}\right| = \left(\frac{3m_{B\bar{B}}^{2}}{\pi\alpha^{2}\beta C\left(1 + \frac{1}{2\tau}\right)}\right)^{\frac{1}{2}}\sqrt{\sigma_{B\bar{B}}}$$

analyticity: $G_{_{M}}(4M_{_{B}}^{^{2}}) = G_{_{E}}(4M_{_{B}}^{^{2}}) \implies G_{_{eff}}(4M_{_{B}}^{^{2}}) = G_{_{M}}(4M_{_{B}}^{^{2}})$

Selected Highlight topics

Time-like Form factors of Baryon pair Collins Fragmentation functions; **MLLA/LPHP prediction** Polarization & CPV of Hyperon $(g_{\mu} - 2)/2, 92\%$ from < 2GeV, 7% from 2-5GeV

Collins Fragmentation Function(FF)

D. Boer Nucl.Phys.B806:23(2009):

$$e^+ e^- \rightarrow q \overline{q} \rightarrow \pi_1^{\pm} \pi_2^{\mp} X$$

P. Sun, F. Yuan, PRD 88. 034016 (2013) Predicted Collins asymmetries for BESIII :

Experimentally

Double Ratio to cancel detection effects

Unlike-sign $(\pi^{\pm}\pi^{\mp})$; Like-sign $(\pi^{\pm}\pi^{\pm})$

Charged:
$$(\pi\pi)$$

$$A_{UL(C)} = \frac{R^U}{R^{L(C)}} = A\cos(2\phi) + B$$

Integral Luminosity of STCF

- No Synchrotron radiation mode, assume running time 9 months/year
- Assume data taking efficiency 90%

 10^{35} cm⁻²s⁻¹ × 86400s × 270 days × 90% ~ 2.0ab⁻¹/year 10 years data taking, total 20 ab⁻¹ conservatively Excellent opportunities for the τ -charm physics

BELLE-II

- each 1 ab^{-1} dataset provides
 - $\sim 1.1 \times 10^9 \ B\bar{B} \Rightarrow$ a B-factory;
 - $\sim 1.3 \times 10^9 \ c\bar{c} \Rightarrow$ a charm factory;
 - $\sim 0.9 imes 10^9 \ au^+ au^ \Rightarrow$ a au factory;
 - wide $E_{CM}^{eff.}$ =[0.5-10] GeV via ISR.

Native question : Compete between STCF and BELLE-II ?

Data samples

Data samples with 1 ab⁻¹ integral luminosity

			Belle II					
Data Set	process	$\sigma/{\rm nb}$	N	ST eff./ $\%$	ST N	$\sigma/{\rm nb}$	N	Tag N
J/ψ	_	_	1.0×10^{12}	_	_	_	_	_
$\psi(2S)$	_	_	3.0×10^{11}	_	_	_	_	_
D^0	$D^0 \bar{D^0}(3.77)$	~ 3.6	3.6×10^9	10.8	0.78×10^9	_	$1.4 imes 10^9$	_
D^+	$D^+D^-(3.77)$	~ 2.8	2.8×10^9	9.4	0.53×10^9	_	7.7×10^8	_
D_s	$D_s D_s^*(4.18)$	~ 0.9	$0.9 imes 10^9$	6.0	0.11×10^9	_	2.5×10^8	_
_+	$\tau^{+}\tau^{-}(3.68)$	~ 2.4	2.4×10^9	_	_	0.9	0.9×10^9	_
au :	$\tau^{+}\tau^{-}(4.25)$	~ 3.6	3.5×10^9	_	_	_	_	_
Λ_c	$\Lambda_c \Lambda_c (4.64)$	~ 0.6	5.5×10^8	5.0	0.55×10^8	—	1.6×10^8	$3.6 \times 10^{4*}$

* process
$$e^+e^- \to D^{(*)-}\bar{p}\pi^+\Lambda_c^+$$
.

- **STCF** have more yields /per luminosity
- **STCF** is expected to have higher detection efficiency
- Belle II can have larger integral luminosity

Detail simulations are ongoing to study the potential for the physics research.

R and QCD Physics

Detailed study of exclusive processes $e^+e^-\rightarrow(2-10)h$, $h=\pi,K,\eta$, p... Scan between 2-7GeV and ISR $\sqrt{s}<2GeV$

- Meson Spectroscopy
- Intermediate dynamics
- Search for exotic states (tetraquarks, hybrids, glueballs)
- Form factors

High precision determination of R= $\sigma(e^+ e^- \rightarrow hadrons)/\sigma(e^+ e^- \rightarrow \mu^+ \mu^-)$ at low energies and fundamental quantities

- (g_µ-2)/2, 92% from < 2GeV, 7% from 2-5GeV
- $\alpha(M_z)$, 19.0% from < 2GeV, 18.1% from 2-5GeV
- QCD parameters (charm quark masses)

Inclusive cross section $e^+ e^- \rightarrow h + X$

- QCD parameters (α_s , quark and gluon condensates)
- Fragmentation functions; MLLA/LPHP prediction
- Spin alignment of vector

Two photon Physics

- Measurement of $\Gamma_{\gamma\gamma}$ for $J^{PC} = 0^{-+}, 0^{++}, 2^{-+}, 2^{++}$ states
- Study of $\gamma\gamma^* \rightarrow R$, $R = 1^{++}$
- Transition Form Factors in $\gamma^*\gamma^* \rightarrow \mathbf{R}$
- Cross section of γγ→hadrons

Key Technologies

Polarization

- Spin Polarized Electron Source
- Polarization Rotation and Maintenance for Rings and Final Focus

RF

Superconducting Cavities, Deflecting Cavities, Higher Harmonic Cavities, etc.

Magnets

 High Quality Magnets with high strength, Superconducting Magnets and Solenoids

Diagnostics and Control

 Low Emittance Measurement, Transverse and Longitudinal Feedback, etc.

Collaboration Needed

Accelerator Physics

- > IR Design
- Polarization: Spin Rotation and Maintenance
- Collective Effects: Simulation and Bench Measurements
- Advanced Computational Accelerator Physics

Accelerator Technologies

- Superconducting Cavities and Magnets
- Polarized Beam Sources
- Ultrahigh Vacuum Chamber with Small Aperture,
 Optimized Impedance and Low SEE